Inverse Spectral Problems for Arbitrary-Order Differential Operators with Distribution Coefficients

In this paper, we propose an approach to inverse spectral problems for the <i>n</i>-th order <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>n</mi><mo&g...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Natalia P. Bondarenko
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/55fbd74c981446c3a676a5daf6abf553
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:In this paper, we propose an approach to inverse spectral problems for the <i>n</i>-th order <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>n</mi><mo>≥</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula> ordinary differential operators with distribution coefficients. The inverse problems which consist in the reconstruction of the differential expression coefficients by the Weyl matrix and by several spectra are studied. We prove the uniqueness of solution for these inverse problems, by developing the method of spectral mappings. The results of this paper generalize the previously known results for the second-order differential operators with singular potentials and for the higher-order differential operators with regular coefficients. In the future, the approach of this paper can be used for constructive solution and for investigation of solvability of the considered inverse problems.