Chemopreventive effects of pterostilbene through p53 and cell cycle in mouse lung of squamous cell carcinoma model
Abstract Cell proliferation and cell death abnormalities are strongly linked to the development of cancer, including lung cancer. The purpose of this study was to investigate the effect of pterostilbene on cell proliferation and cell death via cell cycle arrest during the transition from G1 to S pha...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/55ff479f6103475fbf7f913871c0e31c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract Cell proliferation and cell death abnormalities are strongly linked to the development of cancer, including lung cancer. The purpose of this study was to investigate the effect of pterostilbene on cell proliferation and cell death via cell cycle arrest during the transition from G1 to S phase and the p53 pathway. A total of 24 female Balb/C mice were randomly categorized into four groups (n = 6): N-nitroso-tris-chloroethyl urea (NTCU) induced SCC of the lungs, vehicle control, low dose of 10 mg/kg PS + NTCU (PS10), and high dose of 50 mg/kg PS + NTCU (PS50). At week 26, all lungs were harvested for immunohistochemistry and Western blotting analysis. Ki-67 expression is significantly lower, while caspase-3 expression is significantly higher in PS10 and PS50 as compared to the NTCU (p < 0.05). There was a significant decrease in cyclin D1 and cyclin E2 protein expression in PS10 and PS50 when compared to the NTCU (p < 0.05). PS50 significantly increased p53, p21, and p27 protein expression when compared to NTCU (p < 0.05). Pterostilbene is a potential chemoprevention agent for lung SCC as it has the ability to upregulate the p53/p21 pathway, causing cell cycle arrest. |
---|