Fault Detection and Identification Based on Explicit Polynomial Mapping and Combined Statistic in Nonlinear Dynamic Processes
Single traditional multivariate statistical monitoring methods, such as principal component analysis (PCA) and canonical variate analysis (CVA), are less effective in nonlinear dynamic processes. Monitoring approaches based on radial basis kernel function have been intensively applied. However, an i...
Guardado en:
Autores principales: | Liangliang Shang, Kexin Shi, Chen Ma, Aibing Qiu, Liang Hua |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5608a1053a7f46e3abed2bf0875bacff |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
An Enhanced Ensemble Learning-Based Fault Detection and Diagnosis for Grid-Connected PV Systems
por: Khaled Dhibi, et al.
Publicado: (2021) -
Fault Detection in PV Tracking Systems Using an Image Processing Algorithm Based on PCA
por: Tito G. Amaral, et al.
Publicado: (2021) -
Fault Detection and Condition Monitoring of PMSGs in Offshore Wind Turbines
por: Nuno M. A. Freire, et al.
Publicado: (2021) -
A Novel Feature Extraction Method for Soft Faults in Nonlinear Analog Circuits Based on LMD-GFD and KPCA
por: Xinmiao Lu*, et al.
Publicado: (2021) -
Trust-Based Petri Net Model for Fault Detection and Treatment in Automated Manufacturing Systems
por: Ebrahim Ali Alzalab, et al.
Publicado: (2021)