Additive quantile mixed effects modelling with application to longitudinal CD4 count data
Abstract Quantile regression offers an invaluable tool to discern effects that would be missed by other conventional regression models, which are solely based on modeling conditional mean. Quantile regression for mixed-effects models has become practical for longitudinal data analysis due to the rec...
Guardado en:
Autores principales: | Ashenafi A. Yirga, Sileshi F. Melesse, Henry G. Mwambi, Dawit G. Ayele |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/56219bb02d8a4539848d9b3009bc4dd4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Randomized quantile residuals for diagnosing zero-inflated generalized linear mixed models with applications to microbiome count data
por: Wei Bai, et al.
Publicado: (2021) -
Size of wallet estimation: Application of K-nearest neighbour and quantile regression
por: Aashish Jhamtani, et al.
Publicado: (2021) -
A New Mixed Estimator in Nonparametric Regression for Longitudinal Data
por: Made Ayu Dwi Octavanny, et al.
Publicado: (2021) -
K-means clustering of overweight and obese population using quantile-transformed metabolic data
por: Li L, et al.
Publicado: (2019) -
On the Dynamic Cumulative Past Quantile Entropy Ordering
por: Haiyan Wang, et al.
Publicado: (2021)