Ensemble machine learning of factors influencing COVID-19 across US counties
Abstract Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) the causal agent for COVID-19, is a communicable disease spread through close contact. It is known to disproportionately impact certain communities due to both biological susceptibility and inequitable exposure. In this study, we...
Guardado en:
Autores principales: | David McCoy, Whitney Mgbara, Nir Horvitz, Wayne M. Getz, Alan Hubbard |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5627ff3f0a3d4df9973fe0c97238104f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Influence of social determinants of health and county vaccination rates on machine learning models to predict COVID-19 case growth in Tennessee
por: Jamieson D Gray, et al.
Publicado: (2021) -
Spatial Clustering of County-Level COVID-19 Rates in the U.S.
por: Marcus R. Andrews, et al.
Publicado: (2021) -
Universal risk phenotype of US counties for flu-like transmission to improve county-specific COVID-19 incidence forecasts.
por: Yi Huang, et al.
Publicado: (2021) -
Association of COVID-19 mortality with politics and on-demand testing in 217 U.S. counties
por: Leon S. Robertson
Publicado: (2021) -
The Ensembles of Machine Learning Methods for Survival Predicting after Kidney Transplantation
por: Yaroslav Tolstyak, et al.
Publicado: (2021)