A Low-Power RRAM Memory Block for Embedded, Multi-Level Weight and Bias Storage in Artificial Neural Networks
Pattern recognition as a computing task is very well suited for machine learning algorithms utilizing artificial neural networks (ANNs). Computing systems using ANNs usually require some sort of data storage to store the weights and bias values for the processing elements of the individual neurons....
Guardado en:
Autores principales: | Stefan Pechmann, Timo Mai, Julian Potschka, Daniel Reiser, Peter Reichel, Marco Breiling, Marc Reichenbach, Amelie Hagelauer |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/562cb5742c42492f993e25ce25091a4c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A Fully Integrated Reprogrammable CMOS-RRAM Compute-in-Memory Coprocessor for Neuromorphic Applications
por: Justin M. Correll, et al.
Publicado: (2020) -
NeuroSOFM: A Neuromorphic Self-Organizing Feature Map Heterogeneously Integrating RRAM and FeFET
por: Siddharth Barve, et al.
Publicado: (2021) -
Conduction Mechanisms on High Retention Annealed MgO-based Resistive Switching Memory Devices
por: D. J. J. Loy, et al.
Publicado: (2018) -
Ternary Arithmetic Logic Unit Design Utilizing Carbon Nanotube Field Effect Transistor (CNTFET) and Resistive Random Access Memory (RRAM)
por: Furqan Zahoor, et al.
Publicado: (2021) -
Impact of the Stacking Order of HfO<sub><italic>x</italic></sub> and AlO<sub><italic>x</italic></sub> Dielectric Films on RRAM Switching Mechanisms to Behave Digital Resistive Switching and Synaptic Characteristics
por: Kai-Chi Chuang, et al.
Publicado: (2019)