A Biologically-validated HCV E1E2 Heterodimer Structural Model

Abstract The design of vaccine strategies and the development of drugs targeting the early stages of Hepatitis C virus (HCV) infection are hampered by the lack of structural information about its surface glycoproteins E1 and E2, the two constituents of HCV entry machinery. Despite the recent crystal...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Matteo Castelli, Nicola Clementi, Jennifer Pfaff, Giuseppe A. Sautto, Roberta A. Diotti, Roberto Burioni, Benjamin J. Doranz, Matteo Dal Peraro, Massimo Clementi, Nicasio Mancini
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/563bbbe9e5ee45d1a8b0876740226501
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:563bbbe9e5ee45d1a8b0876740226501
record_format dspace
spelling oai:doaj.org-article:563bbbe9e5ee45d1a8b08767402265012021-12-02T15:05:50ZA Biologically-validated HCV E1E2 Heterodimer Structural Model10.1038/s41598-017-00320-72045-2322https://doaj.org/article/563bbbe9e5ee45d1a8b08767402265012017-03-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-00320-7https://doaj.org/toc/2045-2322Abstract The design of vaccine strategies and the development of drugs targeting the early stages of Hepatitis C virus (HCV) infection are hampered by the lack of structural information about its surface glycoproteins E1 and E2, the two constituents of HCV entry machinery. Despite the recent crystal resolution of limited versions of both proteins in truncated form, a complete picture of the E1E2 complex is still missing. Here we combined deep computational analysis of E1E2 secondary, tertiary and quaternary structure with functional and immunological mutational analysis across E1E2 in order to propose an in silico model for the ectodomain of the E1E2 heterodimer. Our model describes E1-E2 ectodomain dimerization interfaces, provides a structural explanation of E1 and E2 immunogenicity and sheds light on the molecular processes and disulfide bridges isomerization underlying the conformational changes required for fusion. Comprehensive alanine mutational analysis across 553 residues of E1E2 also resulted in identifying the epitope maps of diverse mAbs and the disulfide connectivity underlying E1E2 native conformation. The predicted structure unveils E1 and E2 structures in complex, thus representing a step towards the rational design of immunogens and drugs inhibiting HCV entry.Matteo CastelliNicola ClementiJennifer PfaffGiuseppe A. SauttoRoberta A. DiottiRoberto BurioniBenjamin J. DoranzMatteo Dal PeraroMassimo ClementiNicasio ManciniNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-13 (2017)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Matteo Castelli
Nicola Clementi
Jennifer Pfaff
Giuseppe A. Sautto
Roberta A. Diotti
Roberto Burioni
Benjamin J. Doranz
Matteo Dal Peraro
Massimo Clementi
Nicasio Mancini
A Biologically-validated HCV E1E2 Heterodimer Structural Model
description Abstract The design of vaccine strategies and the development of drugs targeting the early stages of Hepatitis C virus (HCV) infection are hampered by the lack of structural information about its surface glycoproteins E1 and E2, the two constituents of HCV entry machinery. Despite the recent crystal resolution of limited versions of both proteins in truncated form, a complete picture of the E1E2 complex is still missing. Here we combined deep computational analysis of E1E2 secondary, tertiary and quaternary structure with functional and immunological mutational analysis across E1E2 in order to propose an in silico model for the ectodomain of the E1E2 heterodimer. Our model describes E1-E2 ectodomain dimerization interfaces, provides a structural explanation of E1 and E2 immunogenicity and sheds light on the molecular processes and disulfide bridges isomerization underlying the conformational changes required for fusion. Comprehensive alanine mutational analysis across 553 residues of E1E2 also resulted in identifying the epitope maps of diverse mAbs and the disulfide connectivity underlying E1E2 native conformation. The predicted structure unveils E1 and E2 structures in complex, thus representing a step towards the rational design of immunogens and drugs inhibiting HCV entry.
format article
author Matteo Castelli
Nicola Clementi
Jennifer Pfaff
Giuseppe A. Sautto
Roberta A. Diotti
Roberto Burioni
Benjamin J. Doranz
Matteo Dal Peraro
Massimo Clementi
Nicasio Mancini
author_facet Matteo Castelli
Nicola Clementi
Jennifer Pfaff
Giuseppe A. Sautto
Roberta A. Diotti
Roberto Burioni
Benjamin J. Doranz
Matteo Dal Peraro
Massimo Clementi
Nicasio Mancini
author_sort Matteo Castelli
title A Biologically-validated HCV E1E2 Heterodimer Structural Model
title_short A Biologically-validated HCV E1E2 Heterodimer Structural Model
title_full A Biologically-validated HCV E1E2 Heterodimer Structural Model
title_fullStr A Biologically-validated HCV E1E2 Heterodimer Structural Model
title_full_unstemmed A Biologically-validated HCV E1E2 Heterodimer Structural Model
title_sort biologically-validated hcv e1e2 heterodimer structural model
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/563bbbe9e5ee45d1a8b0876740226501
work_keys_str_mv AT matteocastelli abiologicallyvalidatedhcve1e2heterodimerstructuralmodel
AT nicolaclementi abiologicallyvalidatedhcve1e2heterodimerstructuralmodel
AT jenniferpfaff abiologicallyvalidatedhcve1e2heterodimerstructuralmodel
AT giuseppeasautto abiologicallyvalidatedhcve1e2heterodimerstructuralmodel
AT robertaadiotti abiologicallyvalidatedhcve1e2heterodimerstructuralmodel
AT robertoburioni abiologicallyvalidatedhcve1e2heterodimerstructuralmodel
AT benjaminjdoranz abiologicallyvalidatedhcve1e2heterodimerstructuralmodel
AT matteodalperaro abiologicallyvalidatedhcve1e2heterodimerstructuralmodel
AT massimoclementi abiologicallyvalidatedhcve1e2heterodimerstructuralmodel
AT nicasiomancini abiologicallyvalidatedhcve1e2heterodimerstructuralmodel
AT matteocastelli biologicallyvalidatedhcve1e2heterodimerstructuralmodel
AT nicolaclementi biologicallyvalidatedhcve1e2heterodimerstructuralmodel
AT jenniferpfaff biologicallyvalidatedhcve1e2heterodimerstructuralmodel
AT giuseppeasautto biologicallyvalidatedhcve1e2heterodimerstructuralmodel
AT robertaadiotti biologicallyvalidatedhcve1e2heterodimerstructuralmodel
AT robertoburioni biologicallyvalidatedhcve1e2heterodimerstructuralmodel
AT benjaminjdoranz biologicallyvalidatedhcve1e2heterodimerstructuralmodel
AT matteodalperaro biologicallyvalidatedhcve1e2heterodimerstructuralmodel
AT massimoclementi biologicallyvalidatedhcve1e2heterodimerstructuralmodel
AT nicasiomancini biologicallyvalidatedhcve1e2heterodimerstructuralmodel
_version_ 1718388704781795328