A Biologically-validated HCV E1E2 Heterodimer Structural Model
Abstract The design of vaccine strategies and the development of drugs targeting the early stages of Hepatitis C virus (HCV) infection are hampered by the lack of structural information about its surface glycoproteins E1 and E2, the two constituents of HCV entry machinery. Despite the recent crystal...
Guardado en:
Autores principales: | , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/563bbbe9e5ee45d1a8b0876740226501 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:563bbbe9e5ee45d1a8b0876740226501 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:563bbbe9e5ee45d1a8b08767402265012021-12-02T15:05:50ZA Biologically-validated HCV E1E2 Heterodimer Structural Model10.1038/s41598-017-00320-72045-2322https://doaj.org/article/563bbbe9e5ee45d1a8b08767402265012017-03-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-00320-7https://doaj.org/toc/2045-2322Abstract The design of vaccine strategies and the development of drugs targeting the early stages of Hepatitis C virus (HCV) infection are hampered by the lack of structural information about its surface glycoproteins E1 and E2, the two constituents of HCV entry machinery. Despite the recent crystal resolution of limited versions of both proteins in truncated form, a complete picture of the E1E2 complex is still missing. Here we combined deep computational analysis of E1E2 secondary, tertiary and quaternary structure with functional and immunological mutational analysis across E1E2 in order to propose an in silico model for the ectodomain of the E1E2 heterodimer. Our model describes E1-E2 ectodomain dimerization interfaces, provides a structural explanation of E1 and E2 immunogenicity and sheds light on the molecular processes and disulfide bridges isomerization underlying the conformational changes required for fusion. Comprehensive alanine mutational analysis across 553 residues of E1E2 also resulted in identifying the epitope maps of diverse mAbs and the disulfide connectivity underlying E1E2 native conformation. The predicted structure unveils E1 and E2 structures in complex, thus representing a step towards the rational design of immunogens and drugs inhibiting HCV entry.Matteo CastelliNicola ClementiJennifer PfaffGiuseppe A. SauttoRoberta A. DiottiRoberto BurioniBenjamin J. DoranzMatteo Dal PeraroMassimo ClementiNicasio ManciniNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-13 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Matteo Castelli Nicola Clementi Jennifer Pfaff Giuseppe A. Sautto Roberta A. Diotti Roberto Burioni Benjamin J. Doranz Matteo Dal Peraro Massimo Clementi Nicasio Mancini A Biologically-validated HCV E1E2 Heterodimer Structural Model |
description |
Abstract The design of vaccine strategies and the development of drugs targeting the early stages of Hepatitis C virus (HCV) infection are hampered by the lack of structural information about its surface glycoproteins E1 and E2, the two constituents of HCV entry machinery. Despite the recent crystal resolution of limited versions of both proteins in truncated form, a complete picture of the E1E2 complex is still missing. Here we combined deep computational analysis of E1E2 secondary, tertiary and quaternary structure with functional and immunological mutational analysis across E1E2 in order to propose an in silico model for the ectodomain of the E1E2 heterodimer. Our model describes E1-E2 ectodomain dimerization interfaces, provides a structural explanation of E1 and E2 immunogenicity and sheds light on the molecular processes and disulfide bridges isomerization underlying the conformational changes required for fusion. Comprehensive alanine mutational analysis across 553 residues of E1E2 also resulted in identifying the epitope maps of diverse mAbs and the disulfide connectivity underlying E1E2 native conformation. The predicted structure unveils E1 and E2 structures in complex, thus representing a step towards the rational design of immunogens and drugs inhibiting HCV entry. |
format |
article |
author |
Matteo Castelli Nicola Clementi Jennifer Pfaff Giuseppe A. Sautto Roberta A. Diotti Roberto Burioni Benjamin J. Doranz Matteo Dal Peraro Massimo Clementi Nicasio Mancini |
author_facet |
Matteo Castelli Nicola Clementi Jennifer Pfaff Giuseppe A. Sautto Roberta A. Diotti Roberto Burioni Benjamin J. Doranz Matteo Dal Peraro Massimo Clementi Nicasio Mancini |
author_sort |
Matteo Castelli |
title |
A Biologically-validated HCV E1E2 Heterodimer Structural Model |
title_short |
A Biologically-validated HCV E1E2 Heterodimer Structural Model |
title_full |
A Biologically-validated HCV E1E2 Heterodimer Structural Model |
title_fullStr |
A Biologically-validated HCV E1E2 Heterodimer Structural Model |
title_full_unstemmed |
A Biologically-validated HCV E1E2 Heterodimer Structural Model |
title_sort |
biologically-validated hcv e1e2 heterodimer structural model |
publisher |
Nature Portfolio |
publishDate |
2017 |
url |
https://doaj.org/article/563bbbe9e5ee45d1a8b0876740226501 |
work_keys_str_mv |
AT matteocastelli abiologicallyvalidatedhcve1e2heterodimerstructuralmodel AT nicolaclementi abiologicallyvalidatedhcve1e2heterodimerstructuralmodel AT jenniferpfaff abiologicallyvalidatedhcve1e2heterodimerstructuralmodel AT giuseppeasautto abiologicallyvalidatedhcve1e2heterodimerstructuralmodel AT robertaadiotti abiologicallyvalidatedhcve1e2heterodimerstructuralmodel AT robertoburioni abiologicallyvalidatedhcve1e2heterodimerstructuralmodel AT benjaminjdoranz abiologicallyvalidatedhcve1e2heterodimerstructuralmodel AT matteodalperaro abiologicallyvalidatedhcve1e2heterodimerstructuralmodel AT massimoclementi abiologicallyvalidatedhcve1e2heterodimerstructuralmodel AT nicasiomancini abiologicallyvalidatedhcve1e2heterodimerstructuralmodel AT matteocastelli biologicallyvalidatedhcve1e2heterodimerstructuralmodel AT nicolaclementi biologicallyvalidatedhcve1e2heterodimerstructuralmodel AT jenniferpfaff biologicallyvalidatedhcve1e2heterodimerstructuralmodel AT giuseppeasautto biologicallyvalidatedhcve1e2heterodimerstructuralmodel AT robertaadiotti biologicallyvalidatedhcve1e2heterodimerstructuralmodel AT robertoburioni biologicallyvalidatedhcve1e2heterodimerstructuralmodel AT benjaminjdoranz biologicallyvalidatedhcve1e2heterodimerstructuralmodel AT matteodalperaro biologicallyvalidatedhcve1e2heterodimerstructuralmodel AT massimoclementi biologicallyvalidatedhcve1e2heterodimerstructuralmodel AT nicasiomancini biologicallyvalidatedhcve1e2heterodimerstructuralmodel |
_version_ |
1718388704781795328 |