On a Memristor-Based Hyperchaotic Circuit in the Context of Nonlocal and Nonsingular Kernel Fractional Operator
Memristor is a nonlinear and memory element that has a future of replacing resistors for nonlinear circuit computation. It exhibits complex properties such as chaos and hyperchaos. A five-dimensional memristor-based circuit in the context of a nonlocal and nonsingular fractional derivative is consid...
Guardado en:
Autores principales: | Shahram Rezapour, Chernet Tuge Deressa, Sina Etemad |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Hindawi Limited
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/563e4290b4af4a838794ec9452be0cd0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
On the generalized fractional snap boundary problems via G-Caputo operators: existence and stability analysis
por: Mohammad Esmael Samei, et al.
Publicado: (2021) -
An analysis on the controllability and stability to some fractional delay dynamical systems on time scales with impulsive effects
por: Bakhtawar Pervaiz, et al.
Publicado: (2021) -
New discussion on nonlocal controllability for fractional evolution system of order 1 < r < 2 $1 < r < 2$
por: M. Mohan Raja, et al.
Publicado: (2021) -
Time-varying data processing with nonvolatile memristor-based temporal kernel
por: Yoon Ho Jang, et al.
Publicado: (2021) -
A system of nonlinear fractional BVPs with ϕ-Laplacian operators and nonlocal conditions
por: Temar,Bahia, et al.
Publicado: (2021)