Nonlinear reconfiguration of network edges, topology and information content during an artificial learning task
Abstract Here, we combine network neuroscience and machine learning to reveal connections between the brain’s network structure and the emerging network structure of an artificial neural network. Specifically, we train a shallow, feedforward neural network to classify hand-written digits and then us...
Guardado en:
Autores principales: | James M. Shine, Mike Li, Oluwasanmi Koyejo, Ben Fulcher, Joseph T. Lizier |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
SpringerOpen
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/56535ee1d8f24f75addbbf7d10541b34 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Computed Tomography Imaging Based on Edge Detection Algorithm in Diagnosis and Rehabilitation Nursing of Stroke Patients with Motor Dysfunction
por: Ting Lu, et al.
Publicado: (2021) -
Analog Circuit Soft Fault Diagnosis Based on Sparse Random Projections and K-Nearest Neighbor
por: Jian Sun, et al.
Publicado: (2021) -
The Model of Makerspace Development Element and Performance Analysis Based on NVivo Classification
por: Yingyan Wang, et al.
Publicado: (2021) -
CT Imaging in the Diagnosis of Lung Injury of Organophosphorus Poisoning and Analysis of Its Correlation with Procalcitonin and C-Reactive Protein Levels
por: Wenwen Sun, et al.
Publicado: (2021) -
Simulation Analysis of the Evolution of Sustainable Operation of Transport Infrastructure Projects under Government Regulation Based on Prospect Theory and BP Neural Network
por: Chongsen Ma, et al.
Publicado: (2021)