A method for utilizing automated machine learning for histopathological classification of testis based on Johnsen scores
Abstract We examined whether a tool for determining Johnsen scores automatically using artificial intelligence (AI) could be used in place of traditional Johnsen scoring to support pathologists’ evaluations. Average precision, precision, and recall were assessed by the Google Cloud AutoML Vision pla...
Guardado en:
Autores principales: | Yurika Ito, Mami Unagami, Fumito Yamabe, Yozo Mitsui, Koichi Nakajima, Koichi Nagao, Hideyuki Kobayashi |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/56570af72ab6480f9c1c1f41d77d342e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Automated acquisition of explainable knowledge from unannotated histopathology images
por: Yoichiro Yamamoto, et al.
Publicado: (2019) -
Integrative multiomics-histopathology analysis for breast cancer classification
por: Yasha Ektefaie, et al.
Publicado: (2021) -
Protective Effect of Allium cepa (Onion) Seeds (AC) Extract on Histopathology of Testis in STZ-Induced Male Rats
por: Fallah,Vajihe, et al.
Publicado: (2017) -
A histopathological classification scheme for abdominal aortic aneurysm disease
por: Laura E. Bruijn, BSc, et al.
Publicado: (2021) -
Predicting Ethanol Steam Reforming Products of Au-Cu Supported over Nano-Shaped CeO<sub>2</sub> Using the Johnsen Measure in PLS
por: Chen Zhi, et al.
Publicado: (2021)