ECSMP: A dataset on emotion, cognition, sleep, and multi-model physiological signals
This paper described the collection of multi-modal physiological signals, which include electroencephalography, electrocardiograph (ECG), photoplethysmography, electrodermal activity, temperature, and accelerometer data, recorded from 89 healthy college students during resting state, the emotion ind...
Guardado en:
Autores principales: | Zhilin Gao, Xingran Cui, Wang Wan, Wenming Zheng, Zhongze Gu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/565abc20f6ec4cfe9775f30446865917 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
U-Sleep: resilient high-frequency sleep staging
por: Mathias Perslev, et al.
Publicado: (2021) -
“Yes, but will it work for my patients?” Driving clinically relevant research with benchmark datasets
por: Trishan Panch, et al.
Publicado: (2020) -
The future of sleep health: a data-driven revolution in sleep science and medicine
por: Ignacio Perez-Pozuelo, et al.
Publicado: (2020) -
Assessment of physiological signs associated with COVID-19 measured using wearable devices
por: Aravind Natarajan, et al.
Publicado: (2020) -
Predicting critical state after COVID-19 diagnosis: model development using a large US electronic health record dataset
por: Mike D. Rinderknecht, et al.
Publicado: (2021)