Adaptive quantum state tomography with neural networks
Abstract Current algorithms for quantum state tomography (QST) are costly both on the experimental front, requiring measurement of many copies of the state, and on the classical computational front, needing a long time to analyze the gathered data. Here, we introduce neural adaptive quantum state to...
Guardado en:
Autores principales: | Yihui Quek, Stanislav Fort, Hui Khoon Ng |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/56790f934957464599c19f2edee4f477 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Adaptive quantum state tomography via linear regression estimation: Theory and two-qubit experiment
por: Bo Qi, et al.
Publicado: (2017) -
Improved trilateration for indoor localization: Neural network and centroid-based approach
por: Satish R Jondhale, et al.
Publicado: (2021) -
An Empirical Study on Intelligent Rural Tourism Service by Neural Network Algorithm Models
por: Jingzhi Chen, et al.
Publicado: (2021) -
Adaptive Similarity Function with Structural Features of Network Embedding for Missing Link Prediction
por: Chuanting Zhang, et al.
Publicado: (2021) -
Chaotic Behavior Analysis of a New Incommensurate Fractional-Order Hopfield Neural Network System
por: Nadjette Debbouche, et al.
Publicado: (2021)