Humic Acid-Oxidizing, Nitrate-Reducing Bacteria in Agricultural Soils
ABSTRACT This study demonstrates the prevalence, phylogenetic diversity, and physiology of nitrate-reducing microorganisms capable of utilizing reduced humic acids (HA) as electron donors in agricultural soils. Most probable number (MPN) enumeration of agricultural soils revealed large populations (...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
American Society for Microbiology
2011
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5697e916147e47ef9dd09ffe3bd7f9dc |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:5697e916147e47ef9dd09ffe3bd7f9dc |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:5697e916147e47ef9dd09ffe3bd7f9dc2021-11-15T15:38:44ZHumic Acid-Oxidizing, Nitrate-Reducing Bacteria in Agricultural Soils10.1128/mBio.00044-112150-7511https://doaj.org/article/5697e916147e47ef9dd09ffe3bd7f9dc2011-09-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mBio.00044-11https://doaj.org/toc/2150-7511ABSTRACT This study demonstrates the prevalence, phylogenetic diversity, and physiology of nitrate-reducing microorganisms capable of utilizing reduced humic acids (HA) as electron donors in agricultural soils. Most probable number (MPN) enumeration of agricultural soils revealed large populations (104 to 106 cells g−1 soil) of microorganisms capable of reducing nitrate while oxidizing the reduced HA analog 2,6-anthrahydroquinone disulfonate (AH2DS) to its corresponding quinone. Nitrate-dependent HA-oxidizing organisms isolated from agricultural soils were phylogenetically diverse and included members of the Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria. Advective up-flow columns inoculated with corn plot soil and amended with reduced HA and nitrate supported both HA oxidation and enhanced nitrate reduction relative to no-donor or oxidized HA controls. The additional electron donating capacity of reduced HA could reasonably be attributed to the oxidation of reduced functional groups. Subsequent 16S rRNA gene-based high-density oligonucleotide microarray (PhyloChip) indicated that reduced HA columns supported the development of a bacterial community enriched with members of the Acidobacteria, Firmicutes, and Betaproteobacteria relative to the no-donor control and initial inoculum. This study identifies a previously unrecognized role for HA in stimulating denitrification processes in saturated soil systems. Furthermore, this study indicates that reduced humic acids impact soil geochemistry and the indigenous bacterial community composition. IMPORTANCE This study identifies a new metabolic capacity in soil microbial communities that may be responsible for the mediation of significant nitrogen losses from soil systems. Nitrate-dependent humic acid (HA)-oxidizing organisms isolated from agricultural soils were phylogenetically diverse and included members of Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria. Advective up-flow columns inoculated with corn plot soil and amended with reduced HA and nitrate supported both HA oxidation and enhanced nitrate reduction relative to no-donor or oxidized HA controls. The additional electron donating capacity of reduced HA could reasonably be attributed to the oxidation of reduced functional groups.J. Ian Van TrumpKelly C. WrightonJ. Cameron ThrashKarrie A. WeberGary L. AndersenJohn D. CoatesAmerican Society for MicrobiologyarticleMicrobiologyQR1-502ENmBio, Vol 2, Iss 4 (2011) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Microbiology QR1-502 |
spellingShingle |
Microbiology QR1-502 J. Ian Van Trump Kelly C. Wrighton J. Cameron Thrash Karrie A. Weber Gary L. Andersen John D. Coates Humic Acid-Oxidizing, Nitrate-Reducing Bacteria in Agricultural Soils |
description |
ABSTRACT This study demonstrates the prevalence, phylogenetic diversity, and physiology of nitrate-reducing microorganisms capable of utilizing reduced humic acids (HA) as electron donors in agricultural soils. Most probable number (MPN) enumeration of agricultural soils revealed large populations (104 to 106 cells g−1 soil) of microorganisms capable of reducing nitrate while oxidizing the reduced HA analog 2,6-anthrahydroquinone disulfonate (AH2DS) to its corresponding quinone. Nitrate-dependent HA-oxidizing organisms isolated from agricultural soils were phylogenetically diverse and included members of the Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria. Advective up-flow columns inoculated with corn plot soil and amended with reduced HA and nitrate supported both HA oxidation and enhanced nitrate reduction relative to no-donor or oxidized HA controls. The additional electron donating capacity of reduced HA could reasonably be attributed to the oxidation of reduced functional groups. Subsequent 16S rRNA gene-based high-density oligonucleotide microarray (PhyloChip) indicated that reduced HA columns supported the development of a bacterial community enriched with members of the Acidobacteria, Firmicutes, and Betaproteobacteria relative to the no-donor control and initial inoculum. This study identifies a previously unrecognized role for HA in stimulating denitrification processes in saturated soil systems. Furthermore, this study indicates that reduced humic acids impact soil geochemistry and the indigenous bacterial community composition. IMPORTANCE This study identifies a new metabolic capacity in soil microbial communities that may be responsible for the mediation of significant nitrogen losses from soil systems. Nitrate-dependent humic acid (HA)-oxidizing organisms isolated from agricultural soils were phylogenetically diverse and included members of Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria. Advective up-flow columns inoculated with corn plot soil and amended with reduced HA and nitrate supported both HA oxidation and enhanced nitrate reduction relative to no-donor or oxidized HA controls. The additional electron donating capacity of reduced HA could reasonably be attributed to the oxidation of reduced functional groups. |
format |
article |
author |
J. Ian Van Trump Kelly C. Wrighton J. Cameron Thrash Karrie A. Weber Gary L. Andersen John D. Coates |
author_facet |
J. Ian Van Trump Kelly C. Wrighton J. Cameron Thrash Karrie A. Weber Gary L. Andersen John D. Coates |
author_sort |
J. Ian Van Trump |
title |
Humic Acid-Oxidizing, Nitrate-Reducing Bacteria in Agricultural Soils |
title_short |
Humic Acid-Oxidizing, Nitrate-Reducing Bacteria in Agricultural Soils |
title_full |
Humic Acid-Oxidizing, Nitrate-Reducing Bacteria in Agricultural Soils |
title_fullStr |
Humic Acid-Oxidizing, Nitrate-Reducing Bacteria in Agricultural Soils |
title_full_unstemmed |
Humic Acid-Oxidizing, Nitrate-Reducing Bacteria in Agricultural Soils |
title_sort |
humic acid-oxidizing, nitrate-reducing bacteria in agricultural soils |
publisher |
American Society for Microbiology |
publishDate |
2011 |
url |
https://doaj.org/article/5697e916147e47ef9dd09ffe3bd7f9dc |
work_keys_str_mv |
AT jianvantrump humicacidoxidizingnitratereducingbacteriainagriculturalsoils AT kellycwrighton humicacidoxidizingnitratereducingbacteriainagriculturalsoils AT jcameronthrash humicacidoxidizingnitratereducingbacteriainagriculturalsoils AT karrieaweber humicacidoxidizingnitratereducingbacteriainagriculturalsoils AT garylandersen humicacidoxidizingnitratereducingbacteriainagriculturalsoils AT johndcoates humicacidoxidizingnitratereducingbacteriainagriculturalsoils |
_version_ |
1718427825717903360 |