Small facial image dataset augmentation using conditional GANs based on incomplete edge feature input

Image data collection and labelling is costly or difficult in many real applications. Generating diverse and controllable images using conditional generative adversarial networks (GANs) for data augmentation from a small dataset is promising but challenging as deep convolutional neural networks need...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Shih-Kai Hung, John Q. Gan
Formato: article
Lenguaje:EN
Publicado: PeerJ Inc. 2021
Materias:
Acceso en línea:https://doaj.org/article/569aead76726429dabfe1c8d961f130f
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Image data collection and labelling is costly or difficult in many real applications. Generating diverse and controllable images using conditional generative adversarial networks (GANs) for data augmentation from a small dataset is promising but challenging as deep convolutional neural networks need a large training dataset to achieve reasonable performance in general. However, unlabeled and incomplete features (e.g., unintegral edges, simplified lines, hand-drawn sketches, discontinuous geometry shapes, etc.) can be conveniently obtained through pre-processing the training images and can be used for image data augmentation. This paper proposes a conditional GAN framework for facial image augmentation using a very small training dataset and incomplete or modified edge features as conditional input for diversity. The proposed method defines a new domain or space for refining interim images to prevent overfitting caused by using a very small training dataset and enhance the tolerance of distortions caused by incomplete edge features, which effectively improves the quality of facial image augmentation with diversity. Experimental results have shown that the proposed method can generate high-quality images of good diversity when the GANs are trained using very sparse edges and a small number of training samples. Compared to the state-of-the-art edge-to-image translation methods that directly convert sparse edges to images, when using a small training dataset, the proposed conditional GAN framework can generate facial images with desirable diversity and acceptable distortions for dataset augmentation and significantly outperform the existing methods in terms of the quality of synthesised images, evaluated by Fréchet Inception Distance (FID) and Kernel Inception Distance (KID) scores.