Systematic inference and comparison of multi-scale chromatin sub-compartments connects spatial organization to cell phenotypes
Computational algorithms to infer chromatin sub-compartments and compartment domains require high-resolution Hi-C maps. Here the authors present Calder, an algorithm that can infer sub-compartments and compartment domains with variable resolution Hi-C data, and they apply it to more than a hundred H...
Guardado en:
Autores principales: | , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/56a9e0c094de41b29bd307369b8ec6b3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Computational algorithms to infer chromatin sub-compartments and compartment domains require high-resolution Hi-C maps. Here the authors present Calder, an algorithm that can infer sub-compartments and compartment domains with variable resolution Hi-C data, and they apply it to more than a hundred Hi-C experiments to study sub-compartment repositioning. |
---|