Fully automatic wound segmentation with deep convolutional neural networks
Abstract Acute and chronic wounds have varying etiologies and are an economic burden to healthcare systems around the world. The advanced wound care market is expected to exceed $22 billion by 2024. Wound care professionals rely heavily on images and image documentation for proper diagnosis and trea...
Guardado en:
Autores principales: | Chuanbo Wang, D. M. Anisuzzaman, Victor Williamson, Mrinal Kanti Dhar, Behrouz Rostami, Jeffrey Niezgoda, Sandeep Gopalakrishnan, Zeyun Yu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/56bf9fb3b4b6459a84419317353c6c89 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Automatic segmentation of inner ear on CT-scan using auto-context convolutional neural network
por: Raabid Hussain, et al.
Publicado: (2021) -
Comparison of wavelet transformations to enhance convolutional neural network performance in brain tumor segmentation
por: Mohamadreza Hajiabadi, et al.
Publicado: (2021) -
Automatic segmentation of uterine endometrial cancer on multi-sequence MRI using a convolutional neural network
por: Yasuhisa Kurata, et al.
Publicado: (2021) -
Automatic seizure detection based on imaged-EEG signals through fully convolutional networks
por: Catalina Gómez, et al.
Publicado: (2020) -
Automatic airway segmentation from computed tomography using robust and efficient 3-D convolutional neural networks
por: Antonio Garcia-Uceda, et al.
Publicado: (2021)