Giant linear magnetoresistance in half-metallic Sr2CrMoO6 thin films
Abstract Linear magnetoresistance (LMR) is a special case of a magnetic-field induced resistivity response, which has been reported in highly disordered semiconductor systems and in topological materials. In this work, we observe LMR effect in half-metallic perovskite Sr2CrMoO6 thin films, of which...
Guardado en:
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/56ca56dca44c4082968384c1029f41b8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:56ca56dca44c4082968384c1029f41b8 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:56ca56dca44c4082968384c1029f41b82021-12-02T15:49:42ZGiant linear magnetoresistance in half-metallic Sr2CrMoO6 thin films10.1038/s41535-021-00354-12397-4648https://doaj.org/article/56ca56dca44c4082968384c1029f41b82021-05-01T00:00:00Zhttps://doi.org/10.1038/s41535-021-00354-1https://doaj.org/toc/2397-4648Abstract Linear magnetoresistance (LMR) is a special case of a magnetic-field induced resistivity response, which has been reported in highly disordered semiconductor systems and in topological materials. In this work, we observe LMR effect in half-metallic perovskite Sr2CrMoO6 thin films, of which the maximum MR value exceeds +1600% at 2 K and 14 T. It is an unusual behavior in ferrimagnetic double perovskite material like Sr2CrMoO6, which are known for intrinsic tunneling-type negative magnetoresistance. In the thin films, the high carriers’ density (~1022 cm−3) and ultrahigh mobility (~104 cm2 V−1 s−1) provide a low-resistivity (~10 nΩ·cm) platform for spin-polarized current. Our DFT calculations and magnetic measurements further support the half-metal band structure. The LMR effect in Sr2CrMoO6 could possibly originate from transport behavior that is governed by the guiding center motion of cyclotron orbitals, where the magnetic domain structure possibly provides disordered potential. The ultrahigh mobility and LMR in this system could broaden the applications of perovskites, and introduce more research on metallic oxide ferri-/ferro-magnetic materials.Zhao-Cai WangLei ChenShuang-Shuang LiJing-Shi YingF. TangGuan-Yin GaoY. FangWeiyao ZhaoDavid CortieXiaolin WangRen-Kui ZhengNature PortfolioarticleMaterials of engineering and construction. Mechanics of materialsTA401-492Atomic physics. Constitution and properties of matterQC170-197ENnpj Quantum Materials, Vol 6, Iss 1, Pp 1-8 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Materials of engineering and construction. Mechanics of materials TA401-492 Atomic physics. Constitution and properties of matter QC170-197 |
spellingShingle |
Materials of engineering and construction. Mechanics of materials TA401-492 Atomic physics. Constitution and properties of matter QC170-197 Zhao-Cai Wang Lei Chen Shuang-Shuang Li Jing-Shi Ying F. Tang Guan-Yin Gao Y. Fang Weiyao Zhao David Cortie Xiaolin Wang Ren-Kui Zheng Giant linear magnetoresistance in half-metallic Sr2CrMoO6 thin films |
description |
Abstract Linear magnetoresistance (LMR) is a special case of a magnetic-field induced resistivity response, which has been reported in highly disordered semiconductor systems and in topological materials. In this work, we observe LMR effect in half-metallic perovskite Sr2CrMoO6 thin films, of which the maximum MR value exceeds +1600% at 2 K and 14 T. It is an unusual behavior in ferrimagnetic double perovskite material like Sr2CrMoO6, which are known for intrinsic tunneling-type negative magnetoresistance. In the thin films, the high carriers’ density (~1022 cm−3) and ultrahigh mobility (~104 cm2 V−1 s−1) provide a low-resistivity (~10 nΩ·cm) platform for spin-polarized current. Our DFT calculations and magnetic measurements further support the half-metal band structure. The LMR effect in Sr2CrMoO6 could possibly originate from transport behavior that is governed by the guiding center motion of cyclotron orbitals, where the magnetic domain structure possibly provides disordered potential. The ultrahigh mobility and LMR in this system could broaden the applications of perovskites, and introduce more research on metallic oxide ferri-/ferro-magnetic materials. |
format |
article |
author |
Zhao-Cai Wang Lei Chen Shuang-Shuang Li Jing-Shi Ying F. Tang Guan-Yin Gao Y. Fang Weiyao Zhao David Cortie Xiaolin Wang Ren-Kui Zheng |
author_facet |
Zhao-Cai Wang Lei Chen Shuang-Shuang Li Jing-Shi Ying F. Tang Guan-Yin Gao Y. Fang Weiyao Zhao David Cortie Xiaolin Wang Ren-Kui Zheng |
author_sort |
Zhao-Cai Wang |
title |
Giant linear magnetoresistance in half-metallic Sr2CrMoO6 thin films |
title_short |
Giant linear magnetoresistance in half-metallic Sr2CrMoO6 thin films |
title_full |
Giant linear magnetoresistance in half-metallic Sr2CrMoO6 thin films |
title_fullStr |
Giant linear magnetoresistance in half-metallic Sr2CrMoO6 thin films |
title_full_unstemmed |
Giant linear magnetoresistance in half-metallic Sr2CrMoO6 thin films |
title_sort |
giant linear magnetoresistance in half-metallic sr2crmoo6 thin films |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/56ca56dca44c4082968384c1029f41b8 |
work_keys_str_mv |
AT zhaocaiwang giantlinearmagnetoresistanceinhalfmetallicsr2crmoo6thinfilms AT leichen giantlinearmagnetoresistanceinhalfmetallicsr2crmoo6thinfilms AT shuangshuangli giantlinearmagnetoresistanceinhalfmetallicsr2crmoo6thinfilms AT jingshiying giantlinearmagnetoresistanceinhalfmetallicsr2crmoo6thinfilms AT ftang giantlinearmagnetoresistanceinhalfmetallicsr2crmoo6thinfilms AT guanyingao giantlinearmagnetoresistanceinhalfmetallicsr2crmoo6thinfilms AT yfang giantlinearmagnetoresistanceinhalfmetallicsr2crmoo6thinfilms AT weiyaozhao giantlinearmagnetoresistanceinhalfmetallicsr2crmoo6thinfilms AT davidcortie giantlinearmagnetoresistanceinhalfmetallicsr2crmoo6thinfilms AT xiaolinwang giantlinearmagnetoresistanceinhalfmetallicsr2crmoo6thinfilms AT renkuizheng giantlinearmagnetoresistanceinhalfmetallicsr2crmoo6thinfilms |
_version_ |
1718385689740967936 |