PRICKLE1 interaction with SYNAPSIN I reveals a role in autism spectrum disorders.

The frequent comorbidity of Autism Spectrum Disorders (ASDs) with epilepsy suggests a shared underlying genetic susceptibility; several genes, when mutated, can contribute to both disorders. Recently, PRICKLE1 missense mutations were found to segregate with ASD. However, the mechanism by which mutat...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Lily Paemka, Vinit B Mahajan, Jessica M Skeie, Levi P Sowers, Salleh N Ehaideb, Pedro Gonzalez-Alegre, Toshikuni Sasaoka, Hirotaka Tao, Asuka Miyagi, Naoto Ueno, Keizo Takao, Tsuyoshi Miyakawa, Shu Wu, Benjamin W Darbro, Polly J Ferguson, Andrew A Pieper, Jeremiah K Britt, John A Wemmie, Danielle S Rudd, Thomas Wassink, Hatem El-Shanti, Heather C Mefford, Gemma L Carvill, J Robert Manak, Alexander G Bassuk
Format: article
Langue:EN
Publié: Public Library of Science (PLoS) 2013
Sujets:
R
Q
Accès en ligne:https://doaj.org/article/56d27ee6f5524f0d8f722b7539487b5c
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
Description
Résumé:The frequent comorbidity of Autism Spectrum Disorders (ASDs) with epilepsy suggests a shared underlying genetic susceptibility; several genes, when mutated, can contribute to both disorders. Recently, PRICKLE1 missense mutations were found to segregate with ASD. However, the mechanism by which mutations in this gene might contribute to ASD is unknown. To elucidate the role of PRICKLE1 in ASDs, we carried out studies in Prickle1(+/-) mice and Drosophila, yeast, and neuronal cell lines. We show that mice with Prickle1 mutations exhibit ASD-like behaviors. To find proteins that interact with PRICKLE1 in the central nervous system, we performed a yeast two-hybrid screen with a human brain cDNA library and isolated a peptide with homology to SYNAPSIN I (SYN1), a protein involved in synaptogenesis, synaptic vesicle formation, and regulation of neurotransmitter release. Endogenous Prickle1 and Syn1 co-localize in neurons and physically interact via the SYN1 region mutated in ASD and epilepsy. Finally, a mutation in PRICKLE1 disrupts its ability to increase the size of dense-core vesicles in PC12 cells. Taken together, these findings suggest PRICKLE1 mutations contribute to ASD by disrupting the interaction with SYN1 and regulation of synaptic vesicles.