A neural network-based prediction model in water monitoring networks
To improve the prediction accuracy of ammonia nitrogen in water monitoring networks, the combination of a bio-inspired algorithm and back propagation neural network (BPNN) has often been deployed. However, due to the limitations of the bio-inspired algorithm, it would also fall into the local optima...
Guardado en:
Autores principales: | Xiaohong Ji, Ying Pan, Guoqing Jia, Weidong Fang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IWA Publishing
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/56e2819a9fc84021b0c270cbc14599ea |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Short-term water demand predictions coupling an artificial neural network model and a genetic algorithm
por: Majid Gholami Shirkoohi, et al.
Publicado: (2021) -
An inverse design method for determining the optimal tributary flow into a main stream in a rainstorm period
por: Lei Liu, et al.
Publicado: (2021) -
Irrigation pipe distribution network optimization with Jaya Algorithm: a hybrid approach
por: Preeti Walmik Gajghate, et al.
Publicado: (2021) -
Prediction and analysis of domestic water consumption based on optimized grey and Markov model
por: Zhaocai Wang, et al.
Publicado: (2021) -
Empirical modeling of turbidity removal in a dissolved air flotation system: application of artificial neural networks
por: Ana Cláudia Oliveira e Souza, et al.
Publicado: (2021)