Impact of the superoxide dismutase 2 Val16Ala polymorphism on the relationship between valproic acid exposure and elevation of γ-glutamyltransferase in patients with epilepsy: a population pharmacokinetic-pharmacodynamic analysis.

<h4>Background</h4>There has been accumulating evidence that there are associations among γ-glutamyltransferase (γ-GT) elevation and all-cause mortality, cardiovascular diseases and metabolic diseases, including nonalcoholic fatty liver disease. The primary objective of this study was to...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Naoki Ogusu, Junji Saruwatari, Hiroo Nakashima, Madoka Noai, Miki Nishimura, Mariko Deguchi, Kentaro Oniki, Norio Yasui-Furukori, Sunao Kaneko, Takateru Ishitsu, Kazuko Nakagaswa
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2014
Materias:
R
Q
Acceso en línea:https://doaj.org/article/56f37d4bfa8b4f728fc3181cce8130ad
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:56f37d4bfa8b4f728fc3181cce8130ad
record_format dspace
spelling oai:doaj.org-article:56f37d4bfa8b4f728fc3181cce8130ad2021-11-25T05:54:37ZImpact of the superoxide dismutase 2 Val16Ala polymorphism on the relationship between valproic acid exposure and elevation of γ-glutamyltransferase in patients with epilepsy: a population pharmacokinetic-pharmacodynamic analysis.1932-620310.1371/journal.pone.0111066https://doaj.org/article/56f37d4bfa8b4f728fc3181cce8130ad2014-01-01T00:00:00Zhttps://doi.org/10.1371/journal.pone.0111066https://doaj.org/toc/1932-6203<h4>Background</h4>There has been accumulating evidence that there are associations among γ-glutamyltransferase (γ-GT) elevation and all-cause mortality, cardiovascular diseases and metabolic diseases, including nonalcoholic fatty liver disease. The primary objective of this study was to evaluate the impact of the most common and potentially functional polymorphisms of antioxidant enzyme genes, i.e. superoxide dismutase 2 (SOD2), glutathione S-transferase M1 and glutathione S-transferase T1, on the γ-GT elevation during valproic acid (VPA) therapy.<h4>Methods and findings</h4>This retrospective study included 237 and 169 VPA-treated Japanese patients with epilepsy for population pharmacokinetic and pharmacokinetic-pharmacodynamic analyses, respectively. A nonlinear mixed-effect model represented the pharmacokinetics of VPA and the relationships between VPA exposure and γ-GT elevation. A one-compartment model of the pharmacokinetic parameters of VPA adequately described the data; while the model for the probability of the γ-GT elevation was fitted using a logistic regression model, in which the logit function of the probability was a linear function of VPA exposure. The SOD2 Val16Ala polymorphism and complication with intellectual disability were found to be significant covariates influencing the intercept of the logit function for the probability of an elevated γ-GT level. The predicted mean percentages of the subjects with γ-GT elevation were about 2- to 3-fold, 3- to 4-fold and 4- to 8-fold greater in patients with the SOD2 Val/Val genotype but without any intellectual disability, those with the SOD2 Val/Ala or Ala/Ala genotype and intellectual disability and those with the SOD2 Val/Val genotype and intellectual disability, respectively, compared to those with the SOD2 Val/Ala or Ala/Ala genotype without intellectual disability.<h4>Conclusion</h4>Our results showed that the SOD2 Val16Ala polymorphism has an impact on the relationship between VPA exposure and γ-GT elevation in patients with epilepsy. These results suggest that determining the SOD2 genotype could be helpful for preventing the VPA-induced γ-GT elevation.Naoki OgusuJunji SaruwatariHiroo NakashimaMadoka NoaiMiki NishimuraMariko DeguchiKentaro OnikiNorio Yasui-FurukoriSunao KanekoTakateru IshitsuKazuko NakagaswaPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 9, Iss 11, p e111066 (2014)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Naoki Ogusu
Junji Saruwatari
Hiroo Nakashima
Madoka Noai
Miki Nishimura
Mariko Deguchi
Kentaro Oniki
Norio Yasui-Furukori
Sunao Kaneko
Takateru Ishitsu
Kazuko Nakagaswa
Impact of the superoxide dismutase 2 Val16Ala polymorphism on the relationship between valproic acid exposure and elevation of γ-glutamyltransferase in patients with epilepsy: a population pharmacokinetic-pharmacodynamic analysis.
description <h4>Background</h4>There has been accumulating evidence that there are associations among γ-glutamyltransferase (γ-GT) elevation and all-cause mortality, cardiovascular diseases and metabolic diseases, including nonalcoholic fatty liver disease. The primary objective of this study was to evaluate the impact of the most common and potentially functional polymorphisms of antioxidant enzyme genes, i.e. superoxide dismutase 2 (SOD2), glutathione S-transferase M1 and glutathione S-transferase T1, on the γ-GT elevation during valproic acid (VPA) therapy.<h4>Methods and findings</h4>This retrospective study included 237 and 169 VPA-treated Japanese patients with epilepsy for population pharmacokinetic and pharmacokinetic-pharmacodynamic analyses, respectively. A nonlinear mixed-effect model represented the pharmacokinetics of VPA and the relationships between VPA exposure and γ-GT elevation. A one-compartment model of the pharmacokinetic parameters of VPA adequately described the data; while the model for the probability of the γ-GT elevation was fitted using a logistic regression model, in which the logit function of the probability was a linear function of VPA exposure. The SOD2 Val16Ala polymorphism and complication with intellectual disability were found to be significant covariates influencing the intercept of the logit function for the probability of an elevated γ-GT level. The predicted mean percentages of the subjects with γ-GT elevation were about 2- to 3-fold, 3- to 4-fold and 4- to 8-fold greater in patients with the SOD2 Val/Val genotype but without any intellectual disability, those with the SOD2 Val/Ala or Ala/Ala genotype and intellectual disability and those with the SOD2 Val/Val genotype and intellectual disability, respectively, compared to those with the SOD2 Val/Ala or Ala/Ala genotype without intellectual disability.<h4>Conclusion</h4>Our results showed that the SOD2 Val16Ala polymorphism has an impact on the relationship between VPA exposure and γ-GT elevation in patients with epilepsy. These results suggest that determining the SOD2 genotype could be helpful for preventing the VPA-induced γ-GT elevation.
format article
author Naoki Ogusu
Junji Saruwatari
Hiroo Nakashima
Madoka Noai
Miki Nishimura
Mariko Deguchi
Kentaro Oniki
Norio Yasui-Furukori
Sunao Kaneko
Takateru Ishitsu
Kazuko Nakagaswa
author_facet Naoki Ogusu
Junji Saruwatari
Hiroo Nakashima
Madoka Noai
Miki Nishimura
Mariko Deguchi
Kentaro Oniki
Norio Yasui-Furukori
Sunao Kaneko
Takateru Ishitsu
Kazuko Nakagaswa
author_sort Naoki Ogusu
title Impact of the superoxide dismutase 2 Val16Ala polymorphism on the relationship between valproic acid exposure and elevation of γ-glutamyltransferase in patients with epilepsy: a population pharmacokinetic-pharmacodynamic analysis.
title_short Impact of the superoxide dismutase 2 Val16Ala polymorphism on the relationship between valproic acid exposure and elevation of γ-glutamyltransferase in patients with epilepsy: a population pharmacokinetic-pharmacodynamic analysis.
title_full Impact of the superoxide dismutase 2 Val16Ala polymorphism on the relationship between valproic acid exposure and elevation of γ-glutamyltransferase in patients with epilepsy: a population pharmacokinetic-pharmacodynamic analysis.
title_fullStr Impact of the superoxide dismutase 2 Val16Ala polymorphism on the relationship between valproic acid exposure and elevation of γ-glutamyltransferase in patients with epilepsy: a population pharmacokinetic-pharmacodynamic analysis.
title_full_unstemmed Impact of the superoxide dismutase 2 Val16Ala polymorphism on the relationship between valproic acid exposure and elevation of γ-glutamyltransferase in patients with epilepsy: a population pharmacokinetic-pharmacodynamic analysis.
title_sort impact of the superoxide dismutase 2 val16ala polymorphism on the relationship between valproic acid exposure and elevation of γ-glutamyltransferase in patients with epilepsy: a population pharmacokinetic-pharmacodynamic analysis.
publisher Public Library of Science (PLoS)
publishDate 2014
url https://doaj.org/article/56f37d4bfa8b4f728fc3181cce8130ad
work_keys_str_mv AT naokiogusu impactofthesuperoxidedismutase2val16alapolymorphismontherelationshipbetweenvalproicacidexposureandelevationofgglutamyltransferaseinpatientswithepilepsyapopulationpharmacokineticpharmacodynamicanalysis
AT junjisaruwatari impactofthesuperoxidedismutase2val16alapolymorphismontherelationshipbetweenvalproicacidexposureandelevationofgglutamyltransferaseinpatientswithepilepsyapopulationpharmacokineticpharmacodynamicanalysis
AT hiroonakashima impactofthesuperoxidedismutase2val16alapolymorphismontherelationshipbetweenvalproicacidexposureandelevationofgglutamyltransferaseinpatientswithepilepsyapopulationpharmacokineticpharmacodynamicanalysis
AT madokanoai impactofthesuperoxidedismutase2val16alapolymorphismontherelationshipbetweenvalproicacidexposureandelevationofgglutamyltransferaseinpatientswithepilepsyapopulationpharmacokineticpharmacodynamicanalysis
AT mikinishimura impactofthesuperoxidedismutase2val16alapolymorphismontherelationshipbetweenvalproicacidexposureandelevationofgglutamyltransferaseinpatientswithepilepsyapopulationpharmacokineticpharmacodynamicanalysis
AT marikodeguchi impactofthesuperoxidedismutase2val16alapolymorphismontherelationshipbetweenvalproicacidexposureandelevationofgglutamyltransferaseinpatientswithepilepsyapopulationpharmacokineticpharmacodynamicanalysis
AT kentarooniki impactofthesuperoxidedismutase2val16alapolymorphismontherelationshipbetweenvalproicacidexposureandelevationofgglutamyltransferaseinpatientswithepilepsyapopulationpharmacokineticpharmacodynamicanalysis
AT norioyasuifurukori impactofthesuperoxidedismutase2val16alapolymorphismontherelationshipbetweenvalproicacidexposureandelevationofgglutamyltransferaseinpatientswithepilepsyapopulationpharmacokineticpharmacodynamicanalysis
AT sunaokaneko impactofthesuperoxidedismutase2val16alapolymorphismontherelationshipbetweenvalproicacidexposureandelevationofgglutamyltransferaseinpatientswithepilepsyapopulationpharmacokineticpharmacodynamicanalysis
AT takateruishitsu impactofthesuperoxidedismutase2val16alapolymorphismontherelationshipbetweenvalproicacidexposureandelevationofgglutamyltransferaseinpatientswithepilepsyapopulationpharmacokineticpharmacodynamicanalysis
AT kazukonakagaswa impactofthesuperoxidedismutase2val16alapolymorphismontherelationshipbetweenvalproicacidexposureandelevationofgglutamyltransferaseinpatientswithepilepsyapopulationpharmacokineticpharmacodynamicanalysis
_version_ 1718414400841318400