Incorporation of high accuracy surface modeling into machine learning to improve soil organic matter mapping
Digital soil mapping approaches related to soil organic matter (SOM) are crucial to quantify the process of the carbon cycle in terrestrial ecosystems and thus, can better manage soil fertility. Recently, many studies have compared machine learning (ML) models with traditional statistical models in...
Guardado en:
Autores principales: | Zong Wang, Zhengping Du, Xiaoyan Li, Zhengyi Bao, Na Zhao, Tianxiang Yue |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/56f5059ed42145c7b13d73dc757c01df |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Remote sensing inversion of grassland aboveground biomass based on high accuracy surface modeling
por: Wei Zhou, et al.
Publicado: (2021) -
Modeling the Spatial Distribution of Soil Nitrogen Content at Smallholder Maize Farms Using Machine Learning Regression and Sentinel-2 Data
por: Zinhle Mashaba-Munghemezulu, et al.
Publicado: (2021) -
Mapping Population Distribution Based on XGBoost Using Multisource Data
por: Xin Zhao, et al.
Publicado: (2021) -
COVID-19 Risk Factors, Economic Factors, and Epidemiological Factors nexus on Economic Impact: Machine Learning and Structural Equation Modelling Approaches
por: David Opeoluwa Oyewola, et al.
Publicado: (2021) -
Using agronomic biofortification to boost zinc, selenium, and iodine concentrations of food crops grown on the loess plateau in China
por: Mao,H, et al.
Publicado: (2014)