Detecting local genetic correlations with scan statistics
Genetic correlation analyses give insight on complex disease, yet are limited by oversimplification. Here, the authors present LOGODetect, a method using summary statistics from genome-wide association studies to identify genomic regions with correlation signals across multiple phenotypes.
Guardado en:
Autores principales: | Hanmin Guo, James J. Li, Qiongshi Lu, Lin Hou |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5719480cafa349d680319f99b207e396 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A New MSGSA-Optimized Dynamic Window of Spatiotemporal Scan Statistics for Disease Outbreak Detection
por: Haiqi Wang, et al.
Publicado: (2021) -
Integral methods for automatic quantification of fast-scan-cyclic-voltammetry detected neurotransmitters.
por: Leonardo X Espín, et al.
Publicado: (2021) -
Incidental detection of prostate cancer with computed tomography scans
por: Steven Korevaar, et al.
Publicado: (2021) -
The impact of late-career job loss and genetic risk on body mass index: Evidence from variance polygenic scores
por: Lauren L. Schmitz, et al.
Publicado: (2021) -
A genome-wide scan statistic framework for whole-genome sequence data analysis
por: Zihuai He, et al.
Publicado: (2019)