Diffusion in dense supercritical methane from quasi-elastic neutron scattering measurements

Methane is abundant in the Universe, is an important energy carrier and a model system for fundamental studies. Here, the authors measure the self-diffusion coefficient of supercritical methane at ambient temperature up to the freezing pressure, and find a different behavior than expected based on p...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Umbertoluca Ranieri, Stefan Klotz, Richard Gaal, Michael Marek Koza, Livia E. Bove
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/571e4ae86177475ea86ae06df8652cd3
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:571e4ae86177475ea86ae06df8652cd3
record_format dspace
spelling oai:doaj.org-article:571e4ae86177475ea86ae06df8652cd32021-12-02T13:26:41ZDiffusion in dense supercritical methane from quasi-elastic neutron scattering measurements10.1038/s41467-021-22182-42041-1723https://doaj.org/article/571e4ae86177475ea86ae06df8652cd32021-03-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-22182-4https://doaj.org/toc/2041-1723Methane is abundant in the Universe, is an important energy carrier and a model system for fundamental studies. Here, the authors measure the self-diffusion coefficient of supercritical methane at ambient temperature up to the freezing pressure, and find a different behavior than expected based on previous models.Umbertoluca RanieriStefan KlotzRichard GaalMichael Marek KozaLivia E. BoveNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-9 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Umbertoluca Ranieri
Stefan Klotz
Richard Gaal
Michael Marek Koza
Livia E. Bove
Diffusion in dense supercritical methane from quasi-elastic neutron scattering measurements
description Methane is abundant in the Universe, is an important energy carrier and a model system for fundamental studies. Here, the authors measure the self-diffusion coefficient of supercritical methane at ambient temperature up to the freezing pressure, and find a different behavior than expected based on previous models.
format article
author Umbertoluca Ranieri
Stefan Klotz
Richard Gaal
Michael Marek Koza
Livia E. Bove
author_facet Umbertoluca Ranieri
Stefan Klotz
Richard Gaal
Michael Marek Koza
Livia E. Bove
author_sort Umbertoluca Ranieri
title Diffusion in dense supercritical methane from quasi-elastic neutron scattering measurements
title_short Diffusion in dense supercritical methane from quasi-elastic neutron scattering measurements
title_full Diffusion in dense supercritical methane from quasi-elastic neutron scattering measurements
title_fullStr Diffusion in dense supercritical methane from quasi-elastic neutron scattering measurements
title_full_unstemmed Diffusion in dense supercritical methane from quasi-elastic neutron scattering measurements
title_sort diffusion in dense supercritical methane from quasi-elastic neutron scattering measurements
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/571e4ae86177475ea86ae06df8652cd3
work_keys_str_mv AT umbertolucaranieri diffusionindensesupercriticalmethanefromquasielasticneutronscatteringmeasurements
AT stefanklotz diffusionindensesupercriticalmethanefromquasielasticneutronscatteringmeasurements
AT richardgaal diffusionindensesupercriticalmethanefromquasielasticneutronscatteringmeasurements
AT michaelmarekkoza diffusionindensesupercriticalmethanefromquasielasticneutronscatteringmeasurements
AT liviaebove diffusionindensesupercriticalmethanefromquasielasticneutronscatteringmeasurements
_version_ 1718393030444056576