Counting mycobacteria in infected human cells and mouse tissue: a comparison between qPCR and CFU.

Due to the slow growth rate and pathogenicity of mycobacteria, enumeration by traditional reference methods like colony counting is notoriously time-consuming, inconvenient and biohazardous. Thus, novel methods that rapidly and reliably quantify mycobacteria are warranted in experimental models to f...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Sharad Pathak, Jane A Awuh, Nils Anders Leversen, Trude H Flo, Birgitta Asjø
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2012
Materias:
R
Q
Acceso en línea:https://doaj.org/article/57249fd9a3974bd088c8305056f23c54
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:57249fd9a3974bd088c8305056f23c54
record_format dspace
spelling oai:doaj.org-article:57249fd9a3974bd088c8305056f23c542021-11-18T07:21:41ZCounting mycobacteria in infected human cells and mouse tissue: a comparison between qPCR and CFU.1932-620310.1371/journal.pone.0034931https://doaj.org/article/57249fd9a3974bd088c8305056f23c542012-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/22532835/?tool=EBIhttps://doaj.org/toc/1932-6203Due to the slow growth rate and pathogenicity of mycobacteria, enumeration by traditional reference methods like colony counting is notoriously time-consuming, inconvenient and biohazardous. Thus, novel methods that rapidly and reliably quantify mycobacteria are warranted in experimental models to facilitate basic research, development of vaccines and anti-mycobacterial drugs. In this study we have developed quantitative polymerase chain reaction (qPCR) assays for simultaneous quantification of mycobacterial and host DNA in infected human macrophage cultures and in mouse tissues. The qPCR method cannot discriminate live from dead bacteria and found a 10- to 100-fold excess of mycobacterial genomes, relative to colony formation. However, good linear correlations were observed between viable colony counts and qPCR results from infected macrophage cultures (Pearson correlation coefficient [r] for M. tuberculosis = 0.82; M. a. avium = 0.95; M. a. paratuberculosis = 0.91). Regression models that predict colony counts from qPCR data in infected macrophages were validated empirically and showed a high degree of agreement with observed counts. Similar correlation results were also obtained in liver and spleen homogenates of M. a. avium infected mice, although the correlations were distinct for the early phase (< day 9 post-infection) and later phase (≥ day 20 post-infection) liver r = 0.94 and r = 0.91; spleen r = 0.91 and r = 0.87, respectively. Interestingly, in the mouse model the number of live bacteria as determined by colony counts constituted a much higher proportion of the total genomic qPCR count in the early phase (geometric mean ratio of 0.37 and 0.34 in spleen and liver, respectively), as compared to later phase of infection (geometric mean ratio of 0.01 in both spleen and liver). Overall, qPCR methods offer advantages in biosafety, time-saving, assay range and reproducibility compared to colony counting. Additionally, the duplex format allows enumeration of bacteria per host cell, an advantage in experiments where variable cell death can give misleading colony counts.Sharad PathakJane A AwuhNils Anders LeversenTrude H FloBirgitta AsjøPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 7, Iss 4, p e34931 (2012)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Sharad Pathak
Jane A Awuh
Nils Anders Leversen
Trude H Flo
Birgitta Asjø
Counting mycobacteria in infected human cells and mouse tissue: a comparison between qPCR and CFU.
description Due to the slow growth rate and pathogenicity of mycobacteria, enumeration by traditional reference methods like colony counting is notoriously time-consuming, inconvenient and biohazardous. Thus, novel methods that rapidly and reliably quantify mycobacteria are warranted in experimental models to facilitate basic research, development of vaccines and anti-mycobacterial drugs. In this study we have developed quantitative polymerase chain reaction (qPCR) assays for simultaneous quantification of mycobacterial and host DNA in infected human macrophage cultures and in mouse tissues. The qPCR method cannot discriminate live from dead bacteria and found a 10- to 100-fold excess of mycobacterial genomes, relative to colony formation. However, good linear correlations were observed between viable colony counts and qPCR results from infected macrophage cultures (Pearson correlation coefficient [r] for M. tuberculosis = 0.82; M. a. avium = 0.95; M. a. paratuberculosis = 0.91). Regression models that predict colony counts from qPCR data in infected macrophages were validated empirically and showed a high degree of agreement with observed counts. Similar correlation results were also obtained in liver and spleen homogenates of M. a. avium infected mice, although the correlations were distinct for the early phase (< day 9 post-infection) and later phase (≥ day 20 post-infection) liver r = 0.94 and r = 0.91; spleen r = 0.91 and r = 0.87, respectively. Interestingly, in the mouse model the number of live bacteria as determined by colony counts constituted a much higher proportion of the total genomic qPCR count in the early phase (geometric mean ratio of 0.37 and 0.34 in spleen and liver, respectively), as compared to later phase of infection (geometric mean ratio of 0.01 in both spleen and liver). Overall, qPCR methods offer advantages in biosafety, time-saving, assay range and reproducibility compared to colony counting. Additionally, the duplex format allows enumeration of bacteria per host cell, an advantage in experiments where variable cell death can give misleading colony counts.
format article
author Sharad Pathak
Jane A Awuh
Nils Anders Leversen
Trude H Flo
Birgitta Asjø
author_facet Sharad Pathak
Jane A Awuh
Nils Anders Leversen
Trude H Flo
Birgitta Asjø
author_sort Sharad Pathak
title Counting mycobacteria in infected human cells and mouse tissue: a comparison between qPCR and CFU.
title_short Counting mycobacteria in infected human cells and mouse tissue: a comparison between qPCR and CFU.
title_full Counting mycobacteria in infected human cells and mouse tissue: a comparison between qPCR and CFU.
title_fullStr Counting mycobacteria in infected human cells and mouse tissue: a comparison between qPCR and CFU.
title_full_unstemmed Counting mycobacteria in infected human cells and mouse tissue: a comparison between qPCR and CFU.
title_sort counting mycobacteria in infected human cells and mouse tissue: a comparison between qpcr and cfu.
publisher Public Library of Science (PLoS)
publishDate 2012
url https://doaj.org/article/57249fd9a3974bd088c8305056f23c54
work_keys_str_mv AT sharadpathak countingmycobacteriaininfectedhumancellsandmousetissueacomparisonbetweenqpcrandcfu
AT janeaawuh countingmycobacteriaininfectedhumancellsandmousetissueacomparisonbetweenqpcrandcfu
AT nilsandersleversen countingmycobacteriaininfectedhumancellsandmousetissueacomparisonbetweenqpcrandcfu
AT trudehflo countingmycobacteriaininfectedhumancellsandmousetissueacomparisonbetweenqpcrandcfu
AT birgittaasjø countingmycobacteriaininfectedhumancellsandmousetissueacomparisonbetweenqpcrandcfu
_version_ 1718423533428670464