Evolutionary sequence modeling for discovery of peptide hormones.
There are currently a large number of "orphan" G-protein-coupled receptors (GPCRs) whose endogenous ligands (peptide hormones) are unknown. Identification of these peptide hormones is a difficult and important problem. We describe a computational framework that models spatial structure alo...
Guardado en:
Autores principales: | Kemal Sonmez, Naunihal T Zaveri, Ilan A Kerman, Sharon Burke, Charles R Neal, Xinmin Xie, Stanley J Watson, Lawrence Toll |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2009
|
Materias: | |
Acceso en línea: | https://doaj.org/article/572c5aef0083490bb4779bddd0dea9aa |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Genome-enabled discovery of evolutionary divergence in brains and behavior
por: Chinar Patil, et al.
Publicado: (2021) -
Evolutionary computational platform for the automatic discovery of nanocarriers for cancer treatment
por: Namid R. Stillman, et al.
Publicado: (2021) -
Facilitating Antiviral Drug Discovery Using Genetic and Evolutionary Knowledge
por: Xuan Xu, et al.
Publicado: (2021) -
Increasing Hormonal Control of Skeletal Development: An Evolutionary Trend in Amphibians
por: Anna B. Vassilieva, et al.
Publicado: (2021) -
Antimicrobial peptides design by evolutionary multiobjective optimization.
por: Giuseppe Maccari, et al.
Publicado: (2013)