Neural regulation in tooth regeneration of Ambystoma mexicanum

Abstract The presence of nerves is an important factor in successful organ regeneration in amphibians. The Mexican salamander, Ambystoma mexicanum, is able to regenerate limbs, tail, and gills when nerves are present. However, the nerve-dependency of tooth regeneration has not been evaluated. Here,...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Aki Makanae, Yuki Tajika, Koki Nishimura, Nanami Saito, Jun-ichi Tanaka, Akira Satoh
Format: article
Langue:EN
Publié: Nature Portfolio 2020
Sujets:
R
Q
Accès en ligne:https://doaj.org/article/5732d5ad08784ac8b667310b1567d290
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
Description
Résumé:Abstract The presence of nerves is an important factor in successful organ regeneration in amphibians. The Mexican salamander, Ambystoma mexicanum, is able to regenerate limbs, tail, and gills when nerves are present. However, the nerve-dependency of tooth regeneration has not been evaluated. Here, we reevaluated tooth regeneration processes in axolotls using a three-dimensional reconstitution method called CoMBI and found that tooth regeneration is nerve-dependent although the dentary bone is independent of nerve presence. The induction and invagination of the dental lamina were delayed by denervation. Exogenous Fgf2, Fgf8, and Bmp7 expression could induce tooth placodes even in the denervated mandible. Our results suggest that the role of nerves is conserved and that Fgf+Bmp signals play key roles in axolotl organ-level regeneration. The presence of nerves is an important factor in successful organ regeneration in amphibians. The Mexican salamander, Ambystoma mexicanum, is able to regenerate limbs, tail, and gills when nerves are present. However, the nervedependency of tooth regeneration has not been evaluated. Here, we reevaluated tooth regeneration processes in axolotls using a three-dimensional reconstitution method called CoMBI and found that tooth regeneration is nerve-dependent although the dentary bone is independent of nerve presence. The induction and invagination of the dental lamina were delayed by denervation. Exogenous Fgf2, Fgf8, and Bmp7 expression could induce tooth placodes even in the denervated mandible. Our results suggest that the role of nerves is conserved and that Fgf+Bmp signals play key roles in axolotl organ-level regeneration.