Combining Statistical Analysis and Machine Learning for EEG Scalp Topograms Classification
Incorporating brain-computer interfaces (BCIs) into daily life requires reducing the reliance of decoding algorithms on the calibration or enabling calibration with the minimal burden on the user. A potential solution could be a pre-trained decoder demonstrating a reasonable accuracy on the naive op...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5743091b38de46a7bf8fadbfca948492 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:5743091b38de46a7bf8fadbfca948492 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:5743091b38de46a7bf8fadbfca9484922021-11-16T05:34:44ZCombining Statistical Analysis and Machine Learning for EEG Scalp Topograms Classification1662-513710.3389/fnsys.2021.716897https://doaj.org/article/5743091b38de46a7bf8fadbfca9484922021-11-01T00:00:00Zhttps://www.frontiersin.org/articles/10.3389/fnsys.2021.716897/fullhttps://doaj.org/toc/1662-5137Incorporating brain-computer interfaces (BCIs) into daily life requires reducing the reliance of decoding algorithms on the calibration or enabling calibration with the minimal burden on the user. A potential solution could be a pre-trained decoder demonstrating a reasonable accuracy on the naive operators. Addressing this issue, we considered ambiguous stimuli classification tasks and trained an artificial neural network to classify brain responses to the stimuli of low and high ambiguity. We built a pre-trained classifier utilizing time-frequency features corresponding to the fundamental neurophysiological processes shared between subjects. To extract these features, we statistically contrasted electroencephalographic (EEG) spectral power between the classes in the representative group of subjects. As a result, the pre-trained classifier achieved 74% accuracy on the data of newly recruited subjects. Analysis of the literature suggested that a pre-trained classifier could help naive users to start using BCI bypassing training and further increased accuracy during the feedback session. Thus, our results contribute to using BCI during paralysis or limb amputation when there is no explicit user-generated kinematic output to properly train a decoder. In machine learning, our approach may facilitate the development of transfer learning (TL) methods for addressing the cross-subject problem. It allows extracting the interpretable feature subspace from the source data (the representative group of subjects) related to the target data (a naive user), preventing the negative transfer in the cross-subject tasks.Alexander KucSergey KorchaginVladimir A. MaksimenkoVladimir A. MaksimenkoVladimir A. MaksimenkoNatalia ShusharinaAlexander E. HramovAlexander E. HramovAlexander E. HramovFrontiers Media S.A.articleEEG topogramsconvolutional neural networkCNNambiguous stimulipre-trained decoderNeurosciences. Biological psychiatry. NeuropsychiatryRC321-571ENFrontiers in Systems Neuroscience, Vol 15 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
EEG topograms convolutional neural network CNN ambiguous stimuli pre-trained decoder Neurosciences. Biological psychiatry. Neuropsychiatry RC321-571 |
spellingShingle |
EEG topograms convolutional neural network CNN ambiguous stimuli pre-trained decoder Neurosciences. Biological psychiatry. Neuropsychiatry RC321-571 Alexander Kuc Sergey Korchagin Vladimir A. Maksimenko Vladimir A. Maksimenko Vladimir A. Maksimenko Natalia Shusharina Alexander E. Hramov Alexander E. Hramov Alexander E. Hramov Combining Statistical Analysis and Machine Learning for EEG Scalp Topograms Classification |
description |
Incorporating brain-computer interfaces (BCIs) into daily life requires reducing the reliance of decoding algorithms on the calibration or enabling calibration with the minimal burden on the user. A potential solution could be a pre-trained decoder demonstrating a reasonable accuracy on the naive operators. Addressing this issue, we considered ambiguous stimuli classification tasks and trained an artificial neural network to classify brain responses to the stimuli of low and high ambiguity. We built a pre-trained classifier utilizing time-frequency features corresponding to the fundamental neurophysiological processes shared between subjects. To extract these features, we statistically contrasted electroencephalographic (EEG) spectral power between the classes in the representative group of subjects. As a result, the pre-trained classifier achieved 74% accuracy on the data of newly recruited subjects. Analysis of the literature suggested that a pre-trained classifier could help naive users to start using BCI bypassing training and further increased accuracy during the feedback session. Thus, our results contribute to using BCI during paralysis or limb amputation when there is no explicit user-generated kinematic output to properly train a decoder. In machine learning, our approach may facilitate the development of transfer learning (TL) methods for addressing the cross-subject problem. It allows extracting the interpretable feature subspace from the source data (the representative group of subjects) related to the target data (a naive user), preventing the negative transfer in the cross-subject tasks. |
format |
article |
author |
Alexander Kuc Sergey Korchagin Vladimir A. Maksimenko Vladimir A. Maksimenko Vladimir A. Maksimenko Natalia Shusharina Alexander E. Hramov Alexander E. Hramov Alexander E. Hramov |
author_facet |
Alexander Kuc Sergey Korchagin Vladimir A. Maksimenko Vladimir A. Maksimenko Vladimir A. Maksimenko Natalia Shusharina Alexander E. Hramov Alexander E. Hramov Alexander E. Hramov |
author_sort |
Alexander Kuc |
title |
Combining Statistical Analysis and Machine Learning for EEG Scalp Topograms Classification |
title_short |
Combining Statistical Analysis and Machine Learning for EEG Scalp Topograms Classification |
title_full |
Combining Statistical Analysis and Machine Learning for EEG Scalp Topograms Classification |
title_fullStr |
Combining Statistical Analysis and Machine Learning for EEG Scalp Topograms Classification |
title_full_unstemmed |
Combining Statistical Analysis and Machine Learning for EEG Scalp Topograms Classification |
title_sort |
combining statistical analysis and machine learning for eeg scalp topograms classification |
publisher |
Frontiers Media S.A. |
publishDate |
2021 |
url |
https://doaj.org/article/5743091b38de46a7bf8fadbfca948492 |
work_keys_str_mv |
AT alexanderkuc combiningstatisticalanalysisandmachinelearningforeegscalptopogramsclassification AT sergeykorchagin combiningstatisticalanalysisandmachinelearningforeegscalptopogramsclassification AT vladimiramaksimenko combiningstatisticalanalysisandmachinelearningforeegscalptopogramsclassification AT vladimiramaksimenko combiningstatisticalanalysisandmachinelearningforeegscalptopogramsclassification AT vladimiramaksimenko combiningstatisticalanalysisandmachinelearningforeegscalptopogramsclassification AT nataliashusharina combiningstatisticalanalysisandmachinelearningforeegscalptopogramsclassification AT alexanderehramov combiningstatisticalanalysisandmachinelearningforeegscalptopogramsclassification AT alexanderehramov combiningstatisticalanalysisandmachinelearningforeegscalptopogramsclassification AT alexanderehramov combiningstatisticalanalysisandmachinelearningforeegscalptopogramsclassification |
_version_ |
1718426666627235840 |