Combining Statistical Analysis and Machine Learning for EEG Scalp Topograms Classification

Incorporating brain-computer interfaces (BCIs) into daily life requires reducing the reliance of decoding algorithms on the calibration or enabling calibration with the minimal burden on the user. A potential solution could be a pre-trained decoder demonstrating a reasonable accuracy on the naive op...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Alexander Kuc, Sergey Korchagin, Vladimir A. Maksimenko, Natalia Shusharina, Alexander E. Hramov
Formato: article
Lenguaje:EN
Publicado: Frontiers Media S.A. 2021
Materias:
CNN
Acceso en línea:https://doaj.org/article/5743091b38de46a7bf8fadbfca948492
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:5743091b38de46a7bf8fadbfca948492
record_format dspace
spelling oai:doaj.org-article:5743091b38de46a7bf8fadbfca9484922021-11-16T05:34:44ZCombining Statistical Analysis and Machine Learning for EEG Scalp Topograms Classification1662-513710.3389/fnsys.2021.716897https://doaj.org/article/5743091b38de46a7bf8fadbfca9484922021-11-01T00:00:00Zhttps://www.frontiersin.org/articles/10.3389/fnsys.2021.716897/fullhttps://doaj.org/toc/1662-5137Incorporating brain-computer interfaces (BCIs) into daily life requires reducing the reliance of decoding algorithms on the calibration or enabling calibration with the minimal burden on the user. A potential solution could be a pre-trained decoder demonstrating a reasonable accuracy on the naive operators. Addressing this issue, we considered ambiguous stimuli classification tasks and trained an artificial neural network to classify brain responses to the stimuli of low and high ambiguity. We built a pre-trained classifier utilizing time-frequency features corresponding to the fundamental neurophysiological processes shared between subjects. To extract these features, we statistically contrasted electroencephalographic (EEG) spectral power between the classes in the representative group of subjects. As a result, the pre-trained classifier achieved 74% accuracy on the data of newly recruited subjects. Analysis of the literature suggested that a pre-trained classifier could help naive users to start using BCI bypassing training and further increased accuracy during the feedback session. Thus, our results contribute to using BCI during paralysis or limb amputation when there is no explicit user-generated kinematic output to properly train a decoder. In machine learning, our approach may facilitate the development of transfer learning (TL) methods for addressing the cross-subject problem. It allows extracting the interpretable feature subspace from the source data (the representative group of subjects) related to the target data (a naive user), preventing the negative transfer in the cross-subject tasks.Alexander KucSergey KorchaginVladimir A. MaksimenkoVladimir A. MaksimenkoVladimir A. MaksimenkoNatalia ShusharinaAlexander E. HramovAlexander E. HramovAlexander E. HramovFrontiers Media S.A.articleEEG topogramsconvolutional neural networkCNNambiguous stimulipre-trained decoderNeurosciences. Biological psychiatry. NeuropsychiatryRC321-571ENFrontiers in Systems Neuroscience, Vol 15 (2021)
institution DOAJ
collection DOAJ
language EN
topic EEG topograms
convolutional neural network
CNN
ambiguous stimuli
pre-trained decoder
Neurosciences. Biological psychiatry. Neuropsychiatry
RC321-571
spellingShingle EEG topograms
convolutional neural network
CNN
ambiguous stimuli
pre-trained decoder
Neurosciences. Biological psychiatry. Neuropsychiatry
RC321-571
Alexander Kuc
Sergey Korchagin
Vladimir A. Maksimenko
Vladimir A. Maksimenko
Vladimir A. Maksimenko
Natalia Shusharina
Alexander E. Hramov
Alexander E. Hramov
Alexander E. Hramov
Combining Statistical Analysis and Machine Learning for EEG Scalp Topograms Classification
description Incorporating brain-computer interfaces (BCIs) into daily life requires reducing the reliance of decoding algorithms on the calibration or enabling calibration with the minimal burden on the user. A potential solution could be a pre-trained decoder demonstrating a reasonable accuracy on the naive operators. Addressing this issue, we considered ambiguous stimuli classification tasks and trained an artificial neural network to classify brain responses to the stimuli of low and high ambiguity. We built a pre-trained classifier utilizing time-frequency features corresponding to the fundamental neurophysiological processes shared between subjects. To extract these features, we statistically contrasted electroencephalographic (EEG) spectral power between the classes in the representative group of subjects. As a result, the pre-trained classifier achieved 74% accuracy on the data of newly recruited subjects. Analysis of the literature suggested that a pre-trained classifier could help naive users to start using BCI bypassing training and further increased accuracy during the feedback session. Thus, our results contribute to using BCI during paralysis or limb amputation when there is no explicit user-generated kinematic output to properly train a decoder. In machine learning, our approach may facilitate the development of transfer learning (TL) methods for addressing the cross-subject problem. It allows extracting the interpretable feature subspace from the source data (the representative group of subjects) related to the target data (a naive user), preventing the negative transfer in the cross-subject tasks.
format article
author Alexander Kuc
Sergey Korchagin
Vladimir A. Maksimenko
Vladimir A. Maksimenko
Vladimir A. Maksimenko
Natalia Shusharina
Alexander E. Hramov
Alexander E. Hramov
Alexander E. Hramov
author_facet Alexander Kuc
Sergey Korchagin
Vladimir A. Maksimenko
Vladimir A. Maksimenko
Vladimir A. Maksimenko
Natalia Shusharina
Alexander E. Hramov
Alexander E. Hramov
Alexander E. Hramov
author_sort Alexander Kuc
title Combining Statistical Analysis and Machine Learning for EEG Scalp Topograms Classification
title_short Combining Statistical Analysis and Machine Learning for EEG Scalp Topograms Classification
title_full Combining Statistical Analysis and Machine Learning for EEG Scalp Topograms Classification
title_fullStr Combining Statistical Analysis and Machine Learning for EEG Scalp Topograms Classification
title_full_unstemmed Combining Statistical Analysis and Machine Learning for EEG Scalp Topograms Classification
title_sort combining statistical analysis and machine learning for eeg scalp topograms classification
publisher Frontiers Media S.A.
publishDate 2021
url https://doaj.org/article/5743091b38de46a7bf8fadbfca948492
work_keys_str_mv AT alexanderkuc combiningstatisticalanalysisandmachinelearningforeegscalptopogramsclassification
AT sergeykorchagin combiningstatisticalanalysisandmachinelearningforeegscalptopogramsclassification
AT vladimiramaksimenko combiningstatisticalanalysisandmachinelearningforeegscalptopogramsclassification
AT vladimiramaksimenko combiningstatisticalanalysisandmachinelearningforeegscalptopogramsclassification
AT vladimiramaksimenko combiningstatisticalanalysisandmachinelearningforeegscalptopogramsclassification
AT nataliashusharina combiningstatisticalanalysisandmachinelearningforeegscalptopogramsclassification
AT alexanderehramov combiningstatisticalanalysisandmachinelearningforeegscalptopogramsclassification
AT alexanderehramov combiningstatisticalanalysisandmachinelearningforeegscalptopogramsclassification
AT alexanderehramov combiningstatisticalanalysisandmachinelearningforeegscalptopogramsclassification
_version_ 1718426666627235840