Sensitivity of human pluripotent stem cells to insulin precipitation induced by peristaltic pump-based medium circulation: considerations on process development
Abstract Controlled large-scale production of human pluripotent stem cells (hPSCs) is indispensable for their envisioned clinical translation. Aiming at advanced process development in suspension culture, the sensitivity of hPSC media to continuous peristaltic pump-based circulation, a well-establis...
Guardado en:
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5744c11d0e5c48dbaab771a3b762e064 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:5744c11d0e5c48dbaab771a3b762e064 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:5744c11d0e5c48dbaab771a3b762e0642021-12-02T15:05:29ZSensitivity of human pluripotent stem cells to insulin precipitation induced by peristaltic pump-based medium circulation: considerations on process development10.1038/s41598-017-04158-x2045-2322https://doaj.org/article/5744c11d0e5c48dbaab771a3b762e0642017-06-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-04158-xhttps://doaj.org/toc/2045-2322Abstract Controlled large-scale production of human pluripotent stem cells (hPSCs) is indispensable for their envisioned clinical translation. Aiming at advanced process development in suspension culture, the sensitivity of hPSC media to continuous peristaltic pump-based circulation, a well-established technology extensively used in hydraulically-driven bioreactors, was investigated. Unexpectedly, conditioning of low protein media (i.e. E8 and TeSR-E8) in a peristaltic pump circuit induced severe viability loss of hPSCs cultured as aggregates in suspension. Optical, biochemical, and cytological analyses of the media revealed that the applied circulation mode resulted in the reduction of the growth hormone insulin by precipitation of micro-sized particles. Notably, in contrast to insulin depletion, individual withdrawal of other medium protein components (i.e. bFGF, TGFβ1 or transferrin) provoked minor reduction of hPSC viability, if any. Supplementation of the surfactant glycerol or the use of the insulin analogue Aspart did not overcome the issue of insulin precipitation. In contrast, the presence of bovine or human serum albumin (BSA or HSA, respectively) stabilized insulin rescuing its content, possibly by acting as molecular chaperone-like protein, ultimately supporting hPSC maintenance. This study highlights the potential and the requirement of media optimization for automated hPSC processing and has broad implications on media development and bioreactor-based technologies.Diana MassaiEmiliano BolesaniDiana Robles DiazChristina KroppHenning KempfCaroline HalloinUlrich MartinTudor BranisteGiuseppe IsuVanessa HarmsUmberto MorbiducciGerald DrägerRobert ZweigerdtNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-15 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Diana Massai Emiliano Bolesani Diana Robles Diaz Christina Kropp Henning Kempf Caroline Halloin Ulrich Martin Tudor Braniste Giuseppe Isu Vanessa Harms Umberto Morbiducci Gerald Dräger Robert Zweigerdt Sensitivity of human pluripotent stem cells to insulin precipitation induced by peristaltic pump-based medium circulation: considerations on process development |
description |
Abstract Controlled large-scale production of human pluripotent stem cells (hPSCs) is indispensable for their envisioned clinical translation. Aiming at advanced process development in suspension culture, the sensitivity of hPSC media to continuous peristaltic pump-based circulation, a well-established technology extensively used in hydraulically-driven bioreactors, was investigated. Unexpectedly, conditioning of low protein media (i.e. E8 and TeSR-E8) in a peristaltic pump circuit induced severe viability loss of hPSCs cultured as aggregates in suspension. Optical, biochemical, and cytological analyses of the media revealed that the applied circulation mode resulted in the reduction of the growth hormone insulin by precipitation of micro-sized particles. Notably, in contrast to insulin depletion, individual withdrawal of other medium protein components (i.e. bFGF, TGFβ1 or transferrin) provoked minor reduction of hPSC viability, if any. Supplementation of the surfactant glycerol or the use of the insulin analogue Aspart did not overcome the issue of insulin precipitation. In contrast, the presence of bovine or human serum albumin (BSA or HSA, respectively) stabilized insulin rescuing its content, possibly by acting as molecular chaperone-like protein, ultimately supporting hPSC maintenance. This study highlights the potential and the requirement of media optimization for automated hPSC processing and has broad implications on media development and bioreactor-based technologies. |
format |
article |
author |
Diana Massai Emiliano Bolesani Diana Robles Diaz Christina Kropp Henning Kempf Caroline Halloin Ulrich Martin Tudor Braniste Giuseppe Isu Vanessa Harms Umberto Morbiducci Gerald Dräger Robert Zweigerdt |
author_facet |
Diana Massai Emiliano Bolesani Diana Robles Diaz Christina Kropp Henning Kempf Caroline Halloin Ulrich Martin Tudor Braniste Giuseppe Isu Vanessa Harms Umberto Morbiducci Gerald Dräger Robert Zweigerdt |
author_sort |
Diana Massai |
title |
Sensitivity of human pluripotent stem cells to insulin precipitation induced by peristaltic pump-based medium circulation: considerations on process development |
title_short |
Sensitivity of human pluripotent stem cells to insulin precipitation induced by peristaltic pump-based medium circulation: considerations on process development |
title_full |
Sensitivity of human pluripotent stem cells to insulin precipitation induced by peristaltic pump-based medium circulation: considerations on process development |
title_fullStr |
Sensitivity of human pluripotent stem cells to insulin precipitation induced by peristaltic pump-based medium circulation: considerations on process development |
title_full_unstemmed |
Sensitivity of human pluripotent stem cells to insulin precipitation induced by peristaltic pump-based medium circulation: considerations on process development |
title_sort |
sensitivity of human pluripotent stem cells to insulin precipitation induced by peristaltic pump-based medium circulation: considerations on process development |
publisher |
Nature Portfolio |
publishDate |
2017 |
url |
https://doaj.org/article/5744c11d0e5c48dbaab771a3b762e064 |
work_keys_str_mv |
AT dianamassai sensitivityofhumanpluripotentstemcellstoinsulinprecipitationinducedbyperistalticpumpbasedmediumcirculationconsiderationsonprocessdevelopment AT emilianobolesani sensitivityofhumanpluripotentstemcellstoinsulinprecipitationinducedbyperistalticpumpbasedmediumcirculationconsiderationsonprocessdevelopment AT dianaroblesdiaz sensitivityofhumanpluripotentstemcellstoinsulinprecipitationinducedbyperistalticpumpbasedmediumcirculationconsiderationsonprocessdevelopment AT christinakropp sensitivityofhumanpluripotentstemcellstoinsulinprecipitationinducedbyperistalticpumpbasedmediumcirculationconsiderationsonprocessdevelopment AT henningkempf sensitivityofhumanpluripotentstemcellstoinsulinprecipitationinducedbyperistalticpumpbasedmediumcirculationconsiderationsonprocessdevelopment AT carolinehalloin sensitivityofhumanpluripotentstemcellstoinsulinprecipitationinducedbyperistalticpumpbasedmediumcirculationconsiderationsonprocessdevelopment AT ulrichmartin sensitivityofhumanpluripotentstemcellstoinsulinprecipitationinducedbyperistalticpumpbasedmediumcirculationconsiderationsonprocessdevelopment AT tudorbraniste sensitivityofhumanpluripotentstemcellstoinsulinprecipitationinducedbyperistalticpumpbasedmediumcirculationconsiderationsonprocessdevelopment AT giuseppeisu sensitivityofhumanpluripotentstemcellstoinsulinprecipitationinducedbyperistalticpumpbasedmediumcirculationconsiderationsonprocessdevelopment AT vanessaharms sensitivityofhumanpluripotentstemcellstoinsulinprecipitationinducedbyperistalticpumpbasedmediumcirculationconsiderationsonprocessdevelopment AT umbertomorbiducci sensitivityofhumanpluripotentstemcellstoinsulinprecipitationinducedbyperistalticpumpbasedmediumcirculationconsiderationsonprocessdevelopment AT geralddrager sensitivityofhumanpluripotentstemcellstoinsulinprecipitationinducedbyperistalticpumpbasedmediumcirculationconsiderationsonprocessdevelopment AT robertzweigerdt sensitivityofhumanpluripotentstemcellstoinsulinprecipitationinducedbyperistalticpumpbasedmediumcirculationconsiderationsonprocessdevelopment |
_version_ |
1718388830161076224 |