On the chiral anomaly and the Yang–Mills gradient flow

There are currently two singularity-free universal expressions for the topological susceptibility in QCD, one based on the Yang–Mills gradient flow and the other on density-chain correlation functions. While the latter link the susceptibility to the anomalous chiral Ward identities, the gradient flo...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Martin Lüscher
Formato: article
Lenguaje:EN
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://doaj.org/article/5744fc6d881e4cac97bb25179f7098ff
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:There are currently two singularity-free universal expressions for the topological susceptibility in QCD, one based on the Yang–Mills gradient flow and the other on density-chain correlation functions. While the latter link the susceptibility to the anomalous chiral Ward identities, the gradient flow permits the emergence of the topological sectors in lattice QCD to be understood. Here the two expressions are shown to coincide in the continuum theory, for any number of quark flavours in the range where the theory is asymptotically free.