On the chiral anomaly and the Yang–Mills gradient flow

There are currently two singularity-free universal expressions for the topological susceptibility in QCD, one based on the Yang–Mills gradient flow and the other on density-chain correlation functions. While the latter link the susceptibility to the anomalous chiral Ward identities, the gradient flo...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Martin Lüscher
Formato: article
Lenguaje:EN
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://doaj.org/article/5744fc6d881e4cac97bb25179f7098ff
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:5744fc6d881e4cac97bb25179f7098ff
record_format dspace
spelling oai:doaj.org-article:5744fc6d881e4cac97bb25179f7098ff2021-12-04T04:32:26ZOn the chiral anomaly and the Yang–Mills gradient flow0370-269310.1016/j.physletb.2021.136725https://doaj.org/article/5744fc6d881e4cac97bb25179f7098ff2021-12-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S0370269321006651https://doaj.org/toc/0370-2693There are currently two singularity-free universal expressions for the topological susceptibility in QCD, one based on the Yang–Mills gradient flow and the other on density-chain correlation functions. While the latter link the susceptibility to the anomalous chiral Ward identities, the gradient flow permits the emergence of the topological sectors in lattice QCD to be understood. Here the two expressions are shown to coincide in the continuum theory, for any number of quark flavours in the range where the theory is asymptotically free.Martin LüscherElsevierarticlePhysicsQC1-999ENPhysics Letters B, Vol 823, Iss , Pp 136725- (2021)
institution DOAJ
collection DOAJ
language EN
topic Physics
QC1-999
spellingShingle Physics
QC1-999
Martin Lüscher
On the chiral anomaly and the Yang–Mills gradient flow
description There are currently two singularity-free universal expressions for the topological susceptibility in QCD, one based on the Yang–Mills gradient flow and the other on density-chain correlation functions. While the latter link the susceptibility to the anomalous chiral Ward identities, the gradient flow permits the emergence of the topological sectors in lattice QCD to be understood. Here the two expressions are shown to coincide in the continuum theory, for any number of quark flavours in the range where the theory is asymptotically free.
format article
author Martin Lüscher
author_facet Martin Lüscher
author_sort Martin Lüscher
title On the chiral anomaly and the Yang–Mills gradient flow
title_short On the chiral anomaly and the Yang–Mills gradient flow
title_full On the chiral anomaly and the Yang–Mills gradient flow
title_fullStr On the chiral anomaly and the Yang–Mills gradient flow
title_full_unstemmed On the chiral anomaly and the Yang–Mills gradient flow
title_sort on the chiral anomaly and the yang–mills gradient flow
publisher Elsevier
publishDate 2021
url https://doaj.org/article/5744fc6d881e4cac97bb25179f7098ff
work_keys_str_mv AT martinluscher onthechiralanomalyandtheyangmillsgradientflow
_version_ 1718373031348273152