Advancing diagnostic performance and clinical usability of neural networks via adversarial training and dual batch normalization

Unmasking the decision making process of machine learning models is essential for implementing diagnostic support systems in clinical practice. Here, the authors demonstrate that adversarially trained models can significantly enhance the usability of pathology detection as compared to their standard...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Tianyu Han, Sven Nebelung, Federico Pedersoli, Markus Zimmermann, Maximilian Schulze-Hagen, Michael Ho, Christoph Haarburger, Fabian Kiessling, Christiane Kuhl, Volkmar Schulz, Daniel Truhn
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/5746063469c74a20ae5ebc74b05a7231
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:5746063469c74a20ae5ebc74b05a7231
record_format dspace
spelling oai:doaj.org-article:5746063469c74a20ae5ebc74b05a72312021-12-02T18:37:05ZAdvancing diagnostic performance and clinical usability of neural networks via adversarial training and dual batch normalization10.1038/s41467-021-24464-32041-1723https://doaj.org/article/5746063469c74a20ae5ebc74b05a72312021-07-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-24464-3https://doaj.org/toc/2041-1723Unmasking the decision making process of machine learning models is essential for implementing diagnostic support systems in clinical practice. Here, the authors demonstrate that adversarially trained models can significantly enhance the usability of pathology detection as compared to their standard counterparts.Tianyu HanSven NebelungFederico PedersoliMarkus ZimmermannMaximilian Schulze-HagenMichael HoChristoph HaarburgerFabian KiesslingChristiane KuhlVolkmar SchulzDaniel TruhnNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-11 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Tianyu Han
Sven Nebelung
Federico Pedersoli
Markus Zimmermann
Maximilian Schulze-Hagen
Michael Ho
Christoph Haarburger
Fabian Kiessling
Christiane Kuhl
Volkmar Schulz
Daniel Truhn
Advancing diagnostic performance and clinical usability of neural networks via adversarial training and dual batch normalization
description Unmasking the decision making process of machine learning models is essential for implementing diagnostic support systems in clinical practice. Here, the authors demonstrate that adversarially trained models can significantly enhance the usability of pathology detection as compared to their standard counterparts.
format article
author Tianyu Han
Sven Nebelung
Federico Pedersoli
Markus Zimmermann
Maximilian Schulze-Hagen
Michael Ho
Christoph Haarburger
Fabian Kiessling
Christiane Kuhl
Volkmar Schulz
Daniel Truhn
author_facet Tianyu Han
Sven Nebelung
Federico Pedersoli
Markus Zimmermann
Maximilian Schulze-Hagen
Michael Ho
Christoph Haarburger
Fabian Kiessling
Christiane Kuhl
Volkmar Schulz
Daniel Truhn
author_sort Tianyu Han
title Advancing diagnostic performance and clinical usability of neural networks via adversarial training and dual batch normalization
title_short Advancing diagnostic performance and clinical usability of neural networks via adversarial training and dual batch normalization
title_full Advancing diagnostic performance and clinical usability of neural networks via adversarial training and dual batch normalization
title_fullStr Advancing diagnostic performance and clinical usability of neural networks via adversarial training and dual batch normalization
title_full_unstemmed Advancing diagnostic performance and clinical usability of neural networks via adversarial training and dual batch normalization
title_sort advancing diagnostic performance and clinical usability of neural networks via adversarial training and dual batch normalization
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/5746063469c74a20ae5ebc74b05a7231
work_keys_str_mv AT tianyuhan advancingdiagnosticperformanceandclinicalusabilityofneuralnetworksviaadversarialtraininganddualbatchnormalization
AT svennebelung advancingdiagnosticperformanceandclinicalusabilityofneuralnetworksviaadversarialtraininganddualbatchnormalization
AT federicopedersoli advancingdiagnosticperformanceandclinicalusabilityofneuralnetworksviaadversarialtraininganddualbatchnormalization
AT markuszimmermann advancingdiagnosticperformanceandclinicalusabilityofneuralnetworksviaadversarialtraininganddualbatchnormalization
AT maximilianschulzehagen advancingdiagnosticperformanceandclinicalusabilityofneuralnetworksviaadversarialtraininganddualbatchnormalization
AT michaelho advancingdiagnosticperformanceandclinicalusabilityofneuralnetworksviaadversarialtraininganddualbatchnormalization
AT christophhaarburger advancingdiagnosticperformanceandclinicalusabilityofneuralnetworksviaadversarialtraininganddualbatchnormalization
AT fabiankiessling advancingdiagnosticperformanceandclinicalusabilityofneuralnetworksviaadversarialtraininganddualbatchnormalization
AT christianekuhl advancingdiagnosticperformanceandclinicalusabilityofneuralnetworksviaadversarialtraininganddualbatchnormalization
AT volkmarschulz advancingdiagnosticperformanceandclinicalusabilityofneuralnetworksviaadversarialtraininganddualbatchnormalization
AT danieltruhn advancingdiagnosticperformanceandclinicalusabilityofneuralnetworksviaadversarialtraininganddualbatchnormalization
_version_ 1718377861193138176