Advancing diagnostic performance and clinical usability of neural networks via adversarial training and dual batch normalization
Unmasking the decision making process of machine learning models is essential for implementing diagnostic support systems in clinical practice. Here, the authors demonstrate that adversarially trained models can significantly enhance the usability of pathology detection as compared to their standard...
Guardado en:
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5746063469c74a20ae5ebc74b05a7231 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:5746063469c74a20ae5ebc74b05a7231 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:5746063469c74a20ae5ebc74b05a72312021-12-02T18:37:05ZAdvancing diagnostic performance and clinical usability of neural networks via adversarial training and dual batch normalization10.1038/s41467-021-24464-32041-1723https://doaj.org/article/5746063469c74a20ae5ebc74b05a72312021-07-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-24464-3https://doaj.org/toc/2041-1723Unmasking the decision making process of machine learning models is essential for implementing diagnostic support systems in clinical practice. Here, the authors demonstrate that adversarially trained models can significantly enhance the usability of pathology detection as compared to their standard counterparts.Tianyu HanSven NebelungFederico PedersoliMarkus ZimmermannMaximilian Schulze-HagenMichael HoChristoph HaarburgerFabian KiesslingChristiane KuhlVolkmar SchulzDaniel TruhnNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-11 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Tianyu Han Sven Nebelung Federico Pedersoli Markus Zimmermann Maximilian Schulze-Hagen Michael Ho Christoph Haarburger Fabian Kiessling Christiane Kuhl Volkmar Schulz Daniel Truhn Advancing diagnostic performance and clinical usability of neural networks via adversarial training and dual batch normalization |
description |
Unmasking the decision making process of machine learning models is essential for implementing diagnostic support systems in clinical practice. Here, the authors demonstrate that adversarially trained models can significantly enhance the usability of pathology detection as compared to their standard counterparts. |
format |
article |
author |
Tianyu Han Sven Nebelung Federico Pedersoli Markus Zimmermann Maximilian Schulze-Hagen Michael Ho Christoph Haarburger Fabian Kiessling Christiane Kuhl Volkmar Schulz Daniel Truhn |
author_facet |
Tianyu Han Sven Nebelung Federico Pedersoli Markus Zimmermann Maximilian Schulze-Hagen Michael Ho Christoph Haarburger Fabian Kiessling Christiane Kuhl Volkmar Schulz Daniel Truhn |
author_sort |
Tianyu Han |
title |
Advancing diagnostic performance and clinical usability of neural networks via adversarial training and dual batch normalization |
title_short |
Advancing diagnostic performance and clinical usability of neural networks via adversarial training and dual batch normalization |
title_full |
Advancing diagnostic performance and clinical usability of neural networks via adversarial training and dual batch normalization |
title_fullStr |
Advancing diagnostic performance and clinical usability of neural networks via adversarial training and dual batch normalization |
title_full_unstemmed |
Advancing diagnostic performance and clinical usability of neural networks via adversarial training and dual batch normalization |
title_sort |
advancing diagnostic performance and clinical usability of neural networks via adversarial training and dual batch normalization |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/5746063469c74a20ae5ebc74b05a7231 |
work_keys_str_mv |
AT tianyuhan advancingdiagnosticperformanceandclinicalusabilityofneuralnetworksviaadversarialtraininganddualbatchnormalization AT svennebelung advancingdiagnosticperformanceandclinicalusabilityofneuralnetworksviaadversarialtraininganddualbatchnormalization AT federicopedersoli advancingdiagnosticperformanceandclinicalusabilityofneuralnetworksviaadversarialtraininganddualbatchnormalization AT markuszimmermann advancingdiagnosticperformanceandclinicalusabilityofneuralnetworksviaadversarialtraininganddualbatchnormalization AT maximilianschulzehagen advancingdiagnosticperformanceandclinicalusabilityofneuralnetworksviaadversarialtraininganddualbatchnormalization AT michaelho advancingdiagnosticperformanceandclinicalusabilityofneuralnetworksviaadversarialtraininganddualbatchnormalization AT christophhaarburger advancingdiagnosticperformanceandclinicalusabilityofneuralnetworksviaadversarialtraininganddualbatchnormalization AT fabiankiessling advancingdiagnosticperformanceandclinicalusabilityofneuralnetworksviaadversarialtraininganddualbatchnormalization AT christianekuhl advancingdiagnosticperformanceandclinicalusabilityofneuralnetworksviaadversarialtraininganddualbatchnormalization AT volkmarschulz advancingdiagnosticperformanceandclinicalusabilityofneuralnetworksviaadversarialtraininganddualbatchnormalization AT danieltruhn advancingdiagnosticperformanceandclinicalusabilityofneuralnetworksviaadversarialtraininganddualbatchnormalization |
_version_ |
1718377861193138176 |