Advancing diagnostic performance and clinical usability of neural networks via adversarial training and dual batch normalization
Unmasking the decision making process of machine learning models is essential for implementing diagnostic support systems in clinical practice. Here, the authors demonstrate that adversarially trained models can significantly enhance the usability of pathology detection as compared to their standard...
Guardado en:
Autores principales: | Tianyu Han, Sven Nebelung, Federico Pedersoli, Markus Zimmermann, Maximilian Schulze-Hagen, Michael Ho, Christoph Haarburger, Fabian Kiessling, Christiane Kuhl, Volkmar Schulz, Daniel Truhn |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5746063469c74a20ae5ebc74b05a7231 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Author Correction: Radiomics feature reproducibility under inter-rater variability in segmentations of CT images
por: Christoph Haarburger, et al.
Publicado: (2021) -
Artificial intelligence-based automatic assessment of lower limb torsion on MRI
por: Justus Schock, et al.
Publicado: (2021) -
Flow velocity quantification by exploiting the principles of the Doppler effect and magnetic particle imaging
por: Dennis Pantke, et al.
Publicado: (2021) -
Generative adversarial network based on chaotic time series
por: Makoto Naruse, et al.
Publicado: (2019) -
Journal of usability studies
Publicado: (2005)