A detailed study on a solvable system related to the linear fractional difference equation

In this paper, we present a detailed study of the following system of difference equations $ \begin{equation*} x_{n+1} = \frac{a}{1+y_{n}x_{n-1}}, \ y_{n+1} = \frac{b}{1+x_{n}y_{n-1}}, \ n\in\mathbb{N}_{0}, \end{equation*} $ where the parameters $ a $, $ b $, and the initial values $ x_{-1}, \...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Durhasan Turgut Tollu, İbrahim Yalçınkaya, Hijaz Ahmad, Shao-Wen Yao
Formato: article
Lenguaje:EN
Publicado: AIMS Press 2021
Materias:
Acceso en línea:https://doaj.org/article/574b60b4e811461a8aea8149e40f1e93
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:In this paper, we present a detailed study of the following system of difference equations $ \begin{equation*} x_{n+1} = \frac{a}{1+y_{n}x_{n-1}}, \ y_{n+1} = \frac{b}{1+x_{n}y_{n-1}}, \ n\in\mathbb{N}_{0}, \end{equation*} $ where the parameters $ a $, $ b $, and the initial values $ x_{-1}, \; x_{0}, \ y_{-1}, \; y_{0} $ are arbitrary real numbers such that $ x_{n} $ and $ y_{n} $ are defined. We mainly show by using a practical method that the general solution of the above system can be represented by characteristic zeros of the associated third-order linear equation. Also, we characterized the well-defined solutions of the system. Finally, we study long-term behavior of the well-defined solutions by using the obtained representation forms.