A detailed study on a solvable system related to the linear fractional difference equation

In this paper, we present a detailed study of the following system of difference equations $ \begin{equation*} x_{n+1} = \frac{a}{1+y_{n}x_{n-1}}, \ y_{n+1} = \frac{b}{1+x_{n}y_{n-1}}, \ n\in\mathbb{N}_{0}, \end{equation*} $ where the parameters $ a $, $ b $, and the initial values $ x_{-1}, \...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Durhasan Turgut Tollu, İbrahim Yalçınkaya, Hijaz Ahmad, Shao-Wen Yao
Formato: article
Lenguaje:EN
Publicado: AIMS Press 2021
Materias:
Acceso en línea:https://doaj.org/article/574b60b4e811461a8aea8149e40f1e93
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:574b60b4e811461a8aea8149e40f1e93
record_format dspace
spelling oai:doaj.org-article:574b60b4e811461a8aea8149e40f1e932021-11-09T02:11:20ZA detailed study on a solvable system related to the linear fractional difference equation10.3934/mbe.20212731551-0018https://doaj.org/article/574b60b4e811461a8aea8149e40f1e932021-06-01T00:00:00Zhttps://www.aimspress.com/article/doi/10.3934/mbe.2021273?viewType=HTMLhttps://doaj.org/toc/1551-0018In this paper, we present a detailed study of the following system of difference equations $ \begin{equation*} x_{n+1} = \frac{a}{1+y_{n}x_{n-1}}, \ y_{n+1} = \frac{b}{1+x_{n}y_{n-1}}, \ n\in\mathbb{N}_{0}, \end{equation*} $ where the parameters $ a $, $ b $, and the initial values $ x_{-1}, \; x_{0}, \ y_{-1}, \; y_{0} $ are arbitrary real numbers such that $ x_{n} $ and $ y_{n} $ are defined. We mainly show by using a practical method that the general solution of the above system can be represented by characteristic zeros of the associated third-order linear equation. Also, we characterized the well-defined solutions of the system. Finally, we study long-term behavior of the well-defined solutions by using the obtained representation forms.Durhasan Turgut Tolluİbrahim YalçınkayaHijaz AhmadShao-Wen YaoAIMS Pressarticlebehavior of solutionscharacteristic equationgeneral solutionsystem of difference equationsperiodic solutionBiotechnologyTP248.13-248.65MathematicsQA1-939ENMathematical Biosciences and Engineering, Vol 18, Iss 5, Pp 5392-5408 (2021)
institution DOAJ
collection DOAJ
language EN
topic behavior of solutions
characteristic equation
general solution
system of difference equations
periodic solution
Biotechnology
TP248.13-248.65
Mathematics
QA1-939
spellingShingle behavior of solutions
characteristic equation
general solution
system of difference equations
periodic solution
Biotechnology
TP248.13-248.65
Mathematics
QA1-939
Durhasan Turgut Tollu
İbrahim Yalçınkaya
Hijaz Ahmad
Shao-Wen Yao
A detailed study on a solvable system related to the linear fractional difference equation
description In this paper, we present a detailed study of the following system of difference equations $ \begin{equation*} x_{n+1} = \frac{a}{1+y_{n}x_{n-1}}, \ y_{n+1} = \frac{b}{1+x_{n}y_{n-1}}, \ n\in\mathbb{N}_{0}, \end{equation*} $ where the parameters $ a $, $ b $, and the initial values $ x_{-1}, \; x_{0}, \ y_{-1}, \; y_{0} $ are arbitrary real numbers such that $ x_{n} $ and $ y_{n} $ are defined. We mainly show by using a practical method that the general solution of the above system can be represented by characteristic zeros of the associated third-order linear equation. Also, we characterized the well-defined solutions of the system. Finally, we study long-term behavior of the well-defined solutions by using the obtained representation forms.
format article
author Durhasan Turgut Tollu
İbrahim Yalçınkaya
Hijaz Ahmad
Shao-Wen Yao
author_facet Durhasan Turgut Tollu
İbrahim Yalçınkaya
Hijaz Ahmad
Shao-Wen Yao
author_sort Durhasan Turgut Tollu
title A detailed study on a solvable system related to the linear fractional difference equation
title_short A detailed study on a solvable system related to the linear fractional difference equation
title_full A detailed study on a solvable system related to the linear fractional difference equation
title_fullStr A detailed study on a solvable system related to the linear fractional difference equation
title_full_unstemmed A detailed study on a solvable system related to the linear fractional difference equation
title_sort detailed study on a solvable system related to the linear fractional difference equation
publisher AIMS Press
publishDate 2021
url https://doaj.org/article/574b60b4e811461a8aea8149e40f1e93
work_keys_str_mv AT durhasanturguttollu adetailedstudyonasolvablesystemrelatedtothelinearfractionaldifferenceequation
AT ibrahimyalcınkaya adetailedstudyonasolvablesystemrelatedtothelinearfractionaldifferenceequation
AT hijazahmad adetailedstudyonasolvablesystemrelatedtothelinearfractionaldifferenceequation
AT shaowenyao adetailedstudyonasolvablesystemrelatedtothelinearfractionaldifferenceequation
AT durhasanturguttollu detailedstudyonasolvablesystemrelatedtothelinearfractionaldifferenceequation
AT ibrahimyalcınkaya detailedstudyonasolvablesystemrelatedtothelinearfractionaldifferenceequation
AT hijazahmad detailedstudyonasolvablesystemrelatedtothelinearfractionaldifferenceequation
AT shaowenyao detailedstudyonasolvablesystemrelatedtothelinearfractionaldifferenceequation
_version_ 1718441385727623168