A detailed study on a solvable system related to the linear fractional difference equation
In this paper, we present a detailed study of the following system of difference equations $ \begin{equation*} x_{n+1} = \frac{a}{1+y_{n}x_{n-1}}, \ y_{n+1} = \frac{b}{1+x_{n}y_{n-1}}, \ n\in\mathbb{N}_{0}, \end{equation*} $ where the parameters $ a $, $ b $, and the initial values $ x_{-1}, \...
Guardado en:
Autores principales: | Durhasan Turgut Tollu, İbrahim Yalçınkaya, Hijaz Ahmad, Shao-Wen Yao |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
AIMS Press
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/574b60b4e811461a8aea8149e40f1e93 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Crank-Nicholson difference scheme for the system of nonlinear parabolic equations observing epidemic models with general nonlinear incidence rate
por: Allaberen Ashyralyev, et al.
Publicado: (2021) -
Neural network approach to data-driven estimation of chemotactic sensitivity in the Keller-Segel model
por: Sunwoo Hwang, et al.
Publicado: (2021) -
A new approach for Volterra functional integral equations with non-vanishing delays and fractional Bagley-Torvik equation
por: Ghomanjani,Fateme
Publicado: (2021) -
Existence of blow-up solutions for quasilinear elliptic equation with nonlinear gradient term
por: Li,Fang, et al.
Publicado: (2014) -
Lie symmetries of Benjamin-Ono equation
por: Weidong Zhao, et al.
Publicado: (2021)