Upper limits to sustainable organic wheat yields
Abstract Current use of mineral nitrogen (N) fertilizers is unsustainable because of its high fossil energy requirements and a considerable enrichment of the biosphere with reactive N. Biological nitrogen fixation (BNF) from leguminous crops is the most important renewable primary N source, especial...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/574bdc609dd346dbbc323322c1d67e23 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:574bdc609dd346dbbc323322c1d67e23 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:574bdc609dd346dbbc323322c1d67e232021-12-02T17:23:49ZUpper limits to sustainable organic wheat yields10.1038/s41598-021-91940-72045-2322https://doaj.org/article/574bdc609dd346dbbc323322c1d67e232021-06-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-91940-7https://doaj.org/toc/2045-2322Abstract Current use of mineral nitrogen (N) fertilizers is unsustainable because of its high fossil energy requirements and a considerable enrichment of the biosphere with reactive N. Biological nitrogen fixation (BNF) from leguminous crops is the most important renewable primary N source, especially in organic farming. However, it remains unclear to which degree BNF can sustainably replace mineral N, overcome the organic to conventional (O:C) yield gap and contribute to food security. Using an agronomic modelling approach, we show that in high-yielding areas farming systems exclusively based on BNF are unlikely to sustainably reach yield levels of mineral-N based systems. For a high reference wheat yield (7.5 t ha−1) and a realistic proportion of fodder legumes in the rotation (33%) even optimistic levels of BNF (282 kg N ha−1), resulted in an O:C ratio far below parity (0.62). Various constraints limit the agricultural use of BNF, such as arable land available for legumes and highly variable performance under on-farm conditions. Reducing the O:C yield gap through legumes will require BNF performance to be increased and N losses to be minimised, yet our results show that limits to the productivity of legume-based farming systems will still remain inevitable.Thomas F. DöringDaniel NeuhoffNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-10 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Thomas F. Döring Daniel Neuhoff Upper limits to sustainable organic wheat yields |
description |
Abstract Current use of mineral nitrogen (N) fertilizers is unsustainable because of its high fossil energy requirements and a considerable enrichment of the biosphere with reactive N. Biological nitrogen fixation (BNF) from leguminous crops is the most important renewable primary N source, especially in organic farming. However, it remains unclear to which degree BNF can sustainably replace mineral N, overcome the organic to conventional (O:C) yield gap and contribute to food security. Using an agronomic modelling approach, we show that in high-yielding areas farming systems exclusively based on BNF are unlikely to sustainably reach yield levels of mineral-N based systems. For a high reference wheat yield (7.5 t ha−1) and a realistic proportion of fodder legumes in the rotation (33%) even optimistic levels of BNF (282 kg N ha−1), resulted in an O:C ratio far below parity (0.62). Various constraints limit the agricultural use of BNF, such as arable land available for legumes and highly variable performance under on-farm conditions. Reducing the O:C yield gap through legumes will require BNF performance to be increased and N losses to be minimised, yet our results show that limits to the productivity of legume-based farming systems will still remain inevitable. |
format |
article |
author |
Thomas F. Döring Daniel Neuhoff |
author_facet |
Thomas F. Döring Daniel Neuhoff |
author_sort |
Thomas F. Döring |
title |
Upper limits to sustainable organic wheat yields |
title_short |
Upper limits to sustainable organic wheat yields |
title_full |
Upper limits to sustainable organic wheat yields |
title_fullStr |
Upper limits to sustainable organic wheat yields |
title_full_unstemmed |
Upper limits to sustainable organic wheat yields |
title_sort |
upper limits to sustainable organic wheat yields |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/574bdc609dd346dbbc323322c1d67e23 |
work_keys_str_mv |
AT thomasfdoring upperlimitstosustainableorganicwheatyields AT danielneuhoff upperlimitstosustainableorganicwheatyields |
_version_ |
1718380969320251392 |