Boundedness of vector-valued sublinear operators on weighted Herz-Morrey spaces with variable exponents

If vector-valued sublinear operators satisfy the size condition and the vector-valued inequality on weighted Lebesgue spaces with variable exponent, then we obtain their boundedness on weighted Herz-Morrey spaces with variable exponents.

Guardado en:
Detalles Bibliográficos
Autores principales: Wang Shengrong, Xu Jingshi
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2021
Materias:
Acceso en línea:https://doaj.org/article/574d92cb151c43e3a104807f2a9b1b7b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:574d92cb151c43e3a104807f2a9b1b7b
record_format dspace
spelling oai:doaj.org-article:574d92cb151c43e3a104807f2a9b1b7b2021-12-05T14:10:52ZBoundedness of vector-valued sublinear operators on weighted Herz-Morrey spaces with variable exponents2391-545510.1515/math-2021-0024https://doaj.org/article/574d92cb151c43e3a104807f2a9b1b7b2021-05-01T00:00:00Zhttps://doi.org/10.1515/math-2021-0024https://doaj.org/toc/2391-5455If vector-valued sublinear operators satisfy the size condition and the vector-valued inequality on weighted Lebesgue spaces with variable exponent, then we obtain their boundedness on weighted Herz-Morrey spaces with variable exponents.Wang ShengrongXu JingshiDe Gruyterarticlesubilinear operatorvector-valued inequalitymuckenhoupt weightvariable exponentherz-morrey space42b2542b35MathematicsQA1-939ENOpen Mathematics, Vol 19, Iss 1, Pp 412-426 (2021)
institution DOAJ
collection DOAJ
language EN
topic subilinear operator
vector-valued inequality
muckenhoupt weight
variable exponent
herz-morrey space
42b25
42b35
Mathematics
QA1-939
spellingShingle subilinear operator
vector-valued inequality
muckenhoupt weight
variable exponent
herz-morrey space
42b25
42b35
Mathematics
QA1-939
Wang Shengrong
Xu Jingshi
Boundedness of vector-valued sublinear operators on weighted Herz-Morrey spaces with variable exponents
description If vector-valued sublinear operators satisfy the size condition and the vector-valued inequality on weighted Lebesgue spaces with variable exponent, then we obtain their boundedness on weighted Herz-Morrey spaces with variable exponents.
format article
author Wang Shengrong
Xu Jingshi
author_facet Wang Shengrong
Xu Jingshi
author_sort Wang Shengrong
title Boundedness of vector-valued sublinear operators on weighted Herz-Morrey spaces with variable exponents
title_short Boundedness of vector-valued sublinear operators on weighted Herz-Morrey spaces with variable exponents
title_full Boundedness of vector-valued sublinear operators on weighted Herz-Morrey spaces with variable exponents
title_fullStr Boundedness of vector-valued sublinear operators on weighted Herz-Morrey spaces with variable exponents
title_full_unstemmed Boundedness of vector-valued sublinear operators on weighted Herz-Morrey spaces with variable exponents
title_sort boundedness of vector-valued sublinear operators on weighted herz-morrey spaces with variable exponents
publisher De Gruyter
publishDate 2021
url https://doaj.org/article/574d92cb151c43e3a104807f2a9b1b7b
work_keys_str_mv AT wangshengrong boundednessofvectorvaluedsublinearoperatorsonweightedherzmorreyspaceswithvariableexponents
AT xujingshi boundednessofvectorvaluedsublinearoperatorsonweightedherzmorreyspaceswithvariableexponents
_version_ 1718371644602318848