Boundedness of vector-valued sublinear operators on weighted Herz-Morrey spaces with variable exponents
If vector-valued sublinear operators satisfy the size condition and the vector-valued inequality on weighted Lebesgue spaces with variable exponent, then we obtain their boundedness on weighted Herz-Morrey spaces with variable exponents.
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/574d92cb151c43e3a104807f2a9b1b7b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:574d92cb151c43e3a104807f2a9b1b7b |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:574d92cb151c43e3a104807f2a9b1b7b2021-12-05T14:10:52ZBoundedness of vector-valued sublinear operators on weighted Herz-Morrey spaces with variable exponents2391-545510.1515/math-2021-0024https://doaj.org/article/574d92cb151c43e3a104807f2a9b1b7b2021-05-01T00:00:00Zhttps://doi.org/10.1515/math-2021-0024https://doaj.org/toc/2391-5455If vector-valued sublinear operators satisfy the size condition and the vector-valued inequality on weighted Lebesgue spaces with variable exponent, then we obtain their boundedness on weighted Herz-Morrey spaces with variable exponents.Wang ShengrongXu JingshiDe Gruyterarticlesubilinear operatorvector-valued inequalitymuckenhoupt weightvariable exponentherz-morrey space42b2542b35MathematicsQA1-939ENOpen Mathematics, Vol 19, Iss 1, Pp 412-426 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
subilinear operator vector-valued inequality muckenhoupt weight variable exponent herz-morrey space 42b25 42b35 Mathematics QA1-939 |
spellingShingle |
subilinear operator vector-valued inequality muckenhoupt weight variable exponent herz-morrey space 42b25 42b35 Mathematics QA1-939 Wang Shengrong Xu Jingshi Boundedness of vector-valued sublinear operators on weighted Herz-Morrey spaces with variable exponents |
description |
If vector-valued sublinear operators satisfy the size condition and the vector-valued inequality on weighted Lebesgue spaces with variable exponent, then we obtain their boundedness on weighted Herz-Morrey spaces with variable exponents. |
format |
article |
author |
Wang Shengrong Xu Jingshi |
author_facet |
Wang Shengrong Xu Jingshi |
author_sort |
Wang Shengrong |
title |
Boundedness of vector-valued sublinear operators on weighted Herz-Morrey spaces with variable exponents |
title_short |
Boundedness of vector-valued sublinear operators on weighted Herz-Morrey spaces with variable exponents |
title_full |
Boundedness of vector-valued sublinear operators on weighted Herz-Morrey spaces with variable exponents |
title_fullStr |
Boundedness of vector-valued sublinear operators on weighted Herz-Morrey spaces with variable exponents |
title_full_unstemmed |
Boundedness of vector-valued sublinear operators on weighted Herz-Morrey spaces with variable exponents |
title_sort |
boundedness of vector-valued sublinear operators on weighted herz-morrey spaces with variable exponents |
publisher |
De Gruyter |
publishDate |
2021 |
url |
https://doaj.org/article/574d92cb151c43e3a104807f2a9b1b7b |
work_keys_str_mv |
AT wangshengrong boundednessofvectorvaluedsublinearoperatorsonweightedherzmorreyspaceswithvariableexponents AT xujingshi boundednessofvectorvaluedsublinearoperatorsonweightedherzmorreyspaceswithvariableexponents |
_version_ |
1718371644602318848 |