Boundedness of vector-valued sublinear operators on weighted Herz-Morrey spaces with variable exponents
If vector-valued sublinear operators satisfy the size condition and the vector-valued inequality on weighted Lebesgue spaces with variable exponent, then we obtain their boundedness on weighted Herz-Morrey spaces with variable exponents.
Guardado en:
Autores principales: | Wang Shengrong, Xu Jingshi |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/574d92cb151c43e3a104807f2a9b1b7b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Some estimates for the commutators of multilinear maximal function on Morrey-type space
por: Yu Xiao, et al.
Publicado: (2021) -
A note on maximal operators related to Laplace-Bessel differential operators on variable exponent Lebesgue spaces
por: Kaya Esra
Publicado: (2021) -
Variation inequalities for rough singular integrals and their commutators on Morrey spaces and Besov spaces
por: Zhang Xiao, et al.
Publicado: (2021) -
Variable Anisotropic Hardy Spaces with Variable Exponents
por: Yang Zhenzhen, et al.
Publicado: (2021) -
Weighted W1, p (·)-Regularity for Degenerate Elliptic Equations in Reifenberg Domains
por: Zhang Junqiang, et al.
Publicado: (2021)