Kernel Adaptive Filters With Feedback Based on Maximum Correntropy
This paper presents novel kernel adaptive filters with feedback, namely, kernel recursive maximum correntropy with multiple feedback (KRMC-MF) and its simplified version, a linear recurrent kernel online learning algorithm based on maximum correntropy criterion (LRKOL-MCC). In LRKOL-MCC and KRMC-MF,...
Guardado en:
Autores principales: | Shiyuan Wang, Lujuan Dang, Wanli Wang, Guobing Qian, Chi K. Tse |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5751cd9eb4e14107834ee836091e3196 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Alternating minimization for data-driven computational elasticity from experimental data: kernel method for learning constitutive manifold
por: Yoshihiro Kanno
Publicado: (2021) -
Tr(R2) control charts based on kernel density estimation for monitoring multivariate variability process
por: Muhammad Mashuri, et al.
Publicado: (2019) -
Fractally Generated Microstrip Bandpass Filter Designs Basedon Dual-Mode Square Ring Resonator for WirelessCommunication Systems
por: Jawad K. Ali
Publicado: (2008) -
Metric Information Matrix for Maximum Mean Discrepancy for Domain Adaptation
por: Wenjuan Ren, et al.
Publicado: (2021) -
Diffusion Generalized MCC with a Variable Center Algorithm for Robust Distributed Estimation
por: Wentao Ma, et al.
Publicado: (2021)