Prediction of cognitive and motor outcome of preterm infants based on automatic quantitative descriptors from neonatal MR brain images

Abstract This study investigates the predictive ability of automatic quantitative brain MRI descriptors for the identification of infants with low cognitive and/or motor outcome at 2–3 years chronological age. MR brain images of 173 patients were acquired at 30 weeks postmenstrual age (PMA) (n = 86)...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Pim Moeskops, Ivana Išgum, Kristin Keunen, Nathalie H. P. Claessens, Ingrid C. van Haastert, Floris Groenendaal, Linda S. de Vries, Max A. Viergever, Manon J. N. L. Benders
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/5769d66f22a044ac8daa040d56f38ab1
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:5769d66f22a044ac8daa040d56f38ab1
record_format dspace
spelling oai:doaj.org-article:5769d66f22a044ac8daa040d56f38ab12021-12-02T16:07:56ZPrediction of cognitive and motor outcome of preterm infants based on automatic quantitative descriptors from neonatal MR brain images10.1038/s41598-017-02307-w2045-2322https://doaj.org/article/5769d66f22a044ac8daa040d56f38ab12017-05-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-02307-whttps://doaj.org/toc/2045-2322Abstract This study investigates the predictive ability of automatic quantitative brain MRI descriptors for the identification of infants with low cognitive and/or motor outcome at 2–3 years chronological age. MR brain images of 173 patients were acquired at 30 weeks postmenstrual age (PMA) (n = 86) and 40 weeks PMA (n = 153) between 2008 and 2013. Eight tissue volumes and measures of cortical morphology were automatically computed. A support vector machine classifier was employed to identify infants who exhibit low cognitive and/or motor outcome (<85) at 2–3 years chronological age as assessed by the Bayley scales. Based on the images acquired at 30 weeks PMA, the automatic identification resulted in an area under the receiver operation characteristic curve (AUC) of 0.78 for low cognitive outcome, and an AUC of 0.80 for low motor outcome. Identification based on the change of the descriptors between 30 and 40 weeks PMA (n = 66) resulted in an AUC of 0.80 for low cognitive outcome and an AUC of 0.85 for low motor outcome. This study provides evidence of the feasibility of identification of preterm infants at risk of cognitive and motor impairments based on descriptors automatically computed from images acquired at 30 and 40 weeks PMA.Pim MoeskopsIvana IšgumKristin KeunenNathalie H. P. ClaessensIngrid C. van HaastertFloris GroenendaalLinda S. de VriesMax A. ViergeverManon J. N. L. BendersNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-10 (2017)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Pim Moeskops
Ivana Išgum
Kristin Keunen
Nathalie H. P. Claessens
Ingrid C. van Haastert
Floris Groenendaal
Linda S. de Vries
Max A. Viergever
Manon J. N. L. Benders
Prediction of cognitive and motor outcome of preterm infants based on automatic quantitative descriptors from neonatal MR brain images
description Abstract This study investigates the predictive ability of automatic quantitative brain MRI descriptors for the identification of infants with low cognitive and/or motor outcome at 2–3 years chronological age. MR brain images of 173 patients were acquired at 30 weeks postmenstrual age (PMA) (n = 86) and 40 weeks PMA (n = 153) between 2008 and 2013. Eight tissue volumes and measures of cortical morphology were automatically computed. A support vector machine classifier was employed to identify infants who exhibit low cognitive and/or motor outcome (<85) at 2–3 years chronological age as assessed by the Bayley scales. Based on the images acquired at 30 weeks PMA, the automatic identification resulted in an area under the receiver operation characteristic curve (AUC) of 0.78 for low cognitive outcome, and an AUC of 0.80 for low motor outcome. Identification based on the change of the descriptors between 30 and 40 weeks PMA (n = 66) resulted in an AUC of 0.80 for low cognitive outcome and an AUC of 0.85 for low motor outcome. This study provides evidence of the feasibility of identification of preterm infants at risk of cognitive and motor impairments based on descriptors automatically computed from images acquired at 30 and 40 weeks PMA.
format article
author Pim Moeskops
Ivana Išgum
Kristin Keunen
Nathalie H. P. Claessens
Ingrid C. van Haastert
Floris Groenendaal
Linda S. de Vries
Max A. Viergever
Manon J. N. L. Benders
author_facet Pim Moeskops
Ivana Išgum
Kristin Keunen
Nathalie H. P. Claessens
Ingrid C. van Haastert
Floris Groenendaal
Linda S. de Vries
Max A. Viergever
Manon J. N. L. Benders
author_sort Pim Moeskops
title Prediction of cognitive and motor outcome of preterm infants based on automatic quantitative descriptors from neonatal MR brain images
title_short Prediction of cognitive and motor outcome of preterm infants based on automatic quantitative descriptors from neonatal MR brain images
title_full Prediction of cognitive and motor outcome of preterm infants based on automatic quantitative descriptors from neonatal MR brain images
title_fullStr Prediction of cognitive and motor outcome of preterm infants based on automatic quantitative descriptors from neonatal MR brain images
title_full_unstemmed Prediction of cognitive and motor outcome of preterm infants based on automatic quantitative descriptors from neonatal MR brain images
title_sort prediction of cognitive and motor outcome of preterm infants based on automatic quantitative descriptors from neonatal mr brain images
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/5769d66f22a044ac8daa040d56f38ab1
work_keys_str_mv AT pimmoeskops predictionofcognitiveandmotoroutcomeofpreterminfantsbasedonautomaticquantitativedescriptorsfromneonatalmrbrainimages
AT ivanaisgum predictionofcognitiveandmotoroutcomeofpreterminfantsbasedonautomaticquantitativedescriptorsfromneonatalmrbrainimages
AT kristinkeunen predictionofcognitiveandmotoroutcomeofpreterminfantsbasedonautomaticquantitativedescriptorsfromneonatalmrbrainimages
AT nathaliehpclaessens predictionofcognitiveandmotoroutcomeofpreterminfantsbasedonautomaticquantitativedescriptorsfromneonatalmrbrainimages
AT ingridcvanhaastert predictionofcognitiveandmotoroutcomeofpreterminfantsbasedonautomaticquantitativedescriptorsfromneonatalmrbrainimages
AT florisgroenendaal predictionofcognitiveandmotoroutcomeofpreterminfantsbasedonautomaticquantitativedescriptorsfromneonatalmrbrainimages
AT lindasdevries predictionofcognitiveandmotoroutcomeofpreterminfantsbasedonautomaticquantitativedescriptorsfromneonatalmrbrainimages
AT maxaviergever predictionofcognitiveandmotoroutcomeofpreterminfantsbasedonautomaticquantitativedescriptorsfromneonatalmrbrainimages
AT manonjnlbenders predictionofcognitiveandmotoroutcomeofpreterminfantsbasedonautomaticquantitativedescriptorsfromneonatalmrbrainimages
_version_ 1718384656210984960