Solution-phase vs surface-phase aptamer-protein affinity from a label-free kinetic biosensor.

Aptamers are selected DNA ligands that target biomolecules such as proteins. In recent years, they are showing an increasing interest as potential therapeutic agents or recognition elements in biosensor applications. In both cases, the need for characterizing the mating between the target and the ap...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Camille Daniel, Yoann Roupioz, Didier Gasparutto, Thierry Livache, Arnaud Buhot
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2013
Materias:
R
Q
Acceso en línea:https://doaj.org/article/576a4e0622734ecf8d724d58ccded4c0
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:576a4e0622734ecf8d724d58ccded4c0
record_format dspace
spelling oai:doaj.org-article:576a4e0622734ecf8d724d58ccded4c02021-11-18T08:54:51ZSolution-phase vs surface-phase aptamer-protein affinity from a label-free kinetic biosensor.1932-620310.1371/journal.pone.0075419https://doaj.org/article/576a4e0622734ecf8d724d58ccded4c02013-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/24069412/pdf/?tool=EBIhttps://doaj.org/toc/1932-6203Aptamers are selected DNA ligands that target biomolecules such as proteins. In recent years, they are showing an increasing interest as potential therapeutic agents or recognition elements in biosensor applications. In both cases, the need for characterizing the mating between the target and the aptamer either in solution or immobilized on a surface, is pressing. In this context, we have developed a kinetic biosensor made of micro-arrayed anti-thrombin aptamers to assess the kinetic parameters of this interaction. The binding of label-free thrombin on the biosensor was monitored in real-time by Surface Plasmon Resonance imaging. Remarkable performances were obtained for the quantification of thrombin without amplification (sub-nanomolar limit of detection and linear range of quantification to two orders of magnitude). The independent determinations of both the solution- and surface-phase affinities, respectively KD(Sol) and KD(Surf), revealed distinct values illustrating the importance of probes, targets or surface interactions in biosensors. Interestingly, KD(Surf) values depend on the aptamer grafting density and linearly extrapolate towards KD(Sol) for highly diluted probes. This suggests a lesser impact of the surface compared to the probe or target cooperativity interactions since the latter decrease with a reduced grafting density.Camille DanielYoann RoupiozDidier GasparuttoThierry LivacheArnaud BuhotPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 8, Iss 9, p e75419 (2013)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Camille Daniel
Yoann Roupioz
Didier Gasparutto
Thierry Livache
Arnaud Buhot
Solution-phase vs surface-phase aptamer-protein affinity from a label-free kinetic biosensor.
description Aptamers are selected DNA ligands that target biomolecules such as proteins. In recent years, they are showing an increasing interest as potential therapeutic agents or recognition elements in biosensor applications. In both cases, the need for characterizing the mating between the target and the aptamer either in solution or immobilized on a surface, is pressing. In this context, we have developed a kinetic biosensor made of micro-arrayed anti-thrombin aptamers to assess the kinetic parameters of this interaction. The binding of label-free thrombin on the biosensor was monitored in real-time by Surface Plasmon Resonance imaging. Remarkable performances were obtained for the quantification of thrombin without amplification (sub-nanomolar limit of detection and linear range of quantification to two orders of magnitude). The independent determinations of both the solution- and surface-phase affinities, respectively KD(Sol) and KD(Surf), revealed distinct values illustrating the importance of probes, targets or surface interactions in biosensors. Interestingly, KD(Surf) values depend on the aptamer grafting density and linearly extrapolate towards KD(Sol) for highly diluted probes. This suggests a lesser impact of the surface compared to the probe or target cooperativity interactions since the latter decrease with a reduced grafting density.
format article
author Camille Daniel
Yoann Roupioz
Didier Gasparutto
Thierry Livache
Arnaud Buhot
author_facet Camille Daniel
Yoann Roupioz
Didier Gasparutto
Thierry Livache
Arnaud Buhot
author_sort Camille Daniel
title Solution-phase vs surface-phase aptamer-protein affinity from a label-free kinetic biosensor.
title_short Solution-phase vs surface-phase aptamer-protein affinity from a label-free kinetic biosensor.
title_full Solution-phase vs surface-phase aptamer-protein affinity from a label-free kinetic biosensor.
title_fullStr Solution-phase vs surface-phase aptamer-protein affinity from a label-free kinetic biosensor.
title_full_unstemmed Solution-phase vs surface-phase aptamer-protein affinity from a label-free kinetic biosensor.
title_sort solution-phase vs surface-phase aptamer-protein affinity from a label-free kinetic biosensor.
publisher Public Library of Science (PLoS)
publishDate 2013
url https://doaj.org/article/576a4e0622734ecf8d724d58ccded4c0
work_keys_str_mv AT camilledaniel solutionphasevssurfacephaseaptamerproteinaffinityfromalabelfreekineticbiosensor
AT yoannroupioz solutionphasevssurfacephaseaptamerproteinaffinityfromalabelfreekineticbiosensor
AT didiergasparutto solutionphasevssurfacephaseaptamerproteinaffinityfromalabelfreekineticbiosensor
AT thierrylivache solutionphasevssurfacephaseaptamerproteinaffinityfromalabelfreekineticbiosensor
AT arnaudbuhot solutionphasevssurfacephaseaptamerproteinaffinityfromalabelfreekineticbiosensor
_version_ 1718421141632057344