TrendyGenes, a computational pipeline for the detection of literature trends in academia and drug discovery
Abstract Target identification and prioritisation are prominent first steps in modern drug discovery. Traditionally, individual scientists have used their expertise to manually interpret scientific literature and prioritise opportunities. However, increasing publication rates and the wider routine c...
Guardado en:
Autores principales: | Guillermo Serrano Nájera, David Narganes Carlón, Daniel J. Crowther |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5772d4e7752d418392e61c47ac3c588d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
(Un)Trendy Japan: Twitter bots and the 2017 Japanese general election
por: Mintal Jozef Michal, et al.
Publicado: (2019) -
Computational biomarker pipeline from discovery to clinical implementation: plasma proteomic biomarkers for cardiac transplantation.
por: Gabriela V Cohen Freue, et al.
Publicado: (2013) -
A multiplexed, automated evolution pipeline enables scalable discovery and characterization of biosensors
por: Brent Townshend, et al.
Publicado: (2021) -
A Novel <i>In Silico</i> Benchmarked Pipeline Capable of Complete Protein Analysis: A Possible Tool for Potential Drug Discovery
por: D. D. B. D. Perera, et al.
Publicado: (2021) - Drug Discovery