Electronic control of redox reactions inside Escherichia coli using a genetic module.
Microorganisms regulate the redox state of different biomolecules to precisely control biological processes. These processes can be modulated by electrochemically coupling intracellular biomolecules to an external electrode, but current approaches afford only limited control and specificity. Here we...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/57832763d784496d80451e9843f0dda8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:57832763d784496d80451e9843f0dda8 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:57832763d784496d80451e9843f0dda82021-12-02T20:12:50ZElectronic control of redox reactions inside Escherichia coli using a genetic module.1932-620310.1371/journal.pone.0258380https://doaj.org/article/57832763d784496d80451e9843f0dda82021-01-01T00:00:00Zhttps://doi.org/10.1371/journal.pone.0258380https://doaj.org/toc/1932-6203Microorganisms regulate the redox state of different biomolecules to precisely control biological processes. These processes can be modulated by electrochemically coupling intracellular biomolecules to an external electrode, but current approaches afford only limited control and specificity. Here we describe specific electrochemical control of the reduction of intracellular biomolecules in Escherichia coli through introduction of a heterologous electron transfer pathway. E. coli expressing cymAmtrCAB from Shewanella oneidensis MR-1 consumed electrons directly from a cathode when fumarate or nitrate, both intracellular electron acceptors, were present. The fumarate-triggered current consumption occurred only when fumarate reductase was present, indicating all the electrons passed through this enzyme. Moreover, CymAMtrCAB-expressing E. coli used current to stoichiometrically reduce nitrate. Thus, our work introduces a modular genetic tool to reduce a specific intracellular redox molecule with an electrode, opening the possibility of electronically controlling biological processes such as biosynthesis and growth in any microorganism.Moshe BaruchSara Tejedor-SanzLin SuCaroline M Ajo-FranklinPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 16, Iss 11, p e0258380 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Moshe Baruch Sara Tejedor-Sanz Lin Su Caroline M Ajo-Franklin Electronic control of redox reactions inside Escherichia coli using a genetic module. |
description |
Microorganisms regulate the redox state of different biomolecules to precisely control biological processes. These processes can be modulated by electrochemically coupling intracellular biomolecules to an external electrode, but current approaches afford only limited control and specificity. Here we describe specific electrochemical control of the reduction of intracellular biomolecules in Escherichia coli through introduction of a heterologous electron transfer pathway. E. coli expressing cymAmtrCAB from Shewanella oneidensis MR-1 consumed electrons directly from a cathode when fumarate or nitrate, both intracellular electron acceptors, were present. The fumarate-triggered current consumption occurred only when fumarate reductase was present, indicating all the electrons passed through this enzyme. Moreover, CymAMtrCAB-expressing E. coli used current to stoichiometrically reduce nitrate. Thus, our work introduces a modular genetic tool to reduce a specific intracellular redox molecule with an electrode, opening the possibility of electronically controlling biological processes such as biosynthesis and growth in any microorganism. |
format |
article |
author |
Moshe Baruch Sara Tejedor-Sanz Lin Su Caroline M Ajo-Franklin |
author_facet |
Moshe Baruch Sara Tejedor-Sanz Lin Su Caroline M Ajo-Franklin |
author_sort |
Moshe Baruch |
title |
Electronic control of redox reactions inside Escherichia coli using a genetic module. |
title_short |
Electronic control of redox reactions inside Escherichia coli using a genetic module. |
title_full |
Electronic control of redox reactions inside Escherichia coli using a genetic module. |
title_fullStr |
Electronic control of redox reactions inside Escherichia coli using a genetic module. |
title_full_unstemmed |
Electronic control of redox reactions inside Escherichia coli using a genetic module. |
title_sort |
electronic control of redox reactions inside escherichia coli using a genetic module. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2021 |
url |
https://doaj.org/article/57832763d784496d80451e9843f0dda8 |
work_keys_str_mv |
AT moshebaruch electroniccontrolofredoxreactionsinsideescherichiacoliusingageneticmodule AT saratejedorsanz electroniccontrolofredoxreactionsinsideescherichiacoliusingageneticmodule AT linsu electroniccontrolofredoxreactionsinsideescherichiacoliusingageneticmodule AT carolinemajofranklin electroniccontrolofredoxreactionsinsideescherichiacoliusingageneticmodule |
_version_ |
1718374823810301952 |