Information Limits for Community Detection in Hypergraph with Label Information

In network data mining, community detection refers to the problem of partitioning the nodes of a network into clusters (communities). This is equivalent to identifying the cluster label of each node. A label estimator is said to be an exact recovery of the true labels (communities) if it coincides w...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Xiaofeng Zhao, Wei Zhao, Mingao Yuan
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/5784e698c94c4263b71c7c06a7aa7e56
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:5784e698c94c4263b71c7c06a7aa7e56
record_format dspace
spelling oai:doaj.org-article:5784e698c94c4263b71c7c06a7aa7e562021-11-25T19:06:25ZInformation Limits for Community Detection in Hypergraph with Label Information10.3390/sym131120602073-8994https://doaj.org/article/5784e698c94c4263b71c7c06a7aa7e562021-11-01T00:00:00Zhttps://www.mdpi.com/2073-8994/13/11/2060https://doaj.org/toc/2073-8994In network data mining, community detection refers to the problem of partitioning the nodes of a network into clusters (communities). This is equivalent to identifying the cluster label of each node. A label estimator is said to be an exact recovery of the true labels (communities) if it coincides with the true labels with a probability convergent to one. In this work, we consider the effect of label information on the exact recovery of communities in an <i>m</i>-uniform Hypergraph Stochastic Block Model (HSBM). We investigate two scenarios of label information: <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></semantics></math></inline-formula> a noisy label for each node is observed independently, with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo>−</mo><msub><mi>α</mi><mi>n</mi></msub></mrow></semantics></math></inline-formula> as the probability that the noisy label will match the true label; <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula> the true label of each node is observed independently, with the probability of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo>−</mo><msub><mi>α</mi><mi>n</mi></msub></mrow></semantics></math></inline-formula>. We derive sharp boundaries for exact recovery under both scenarios from an information-theoretical point of view. The label information improves the sharp detection boundary if and only if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>α</mi><mi>n</mi></msub><mo>=</mo><msup><mi>n</mi><mrow><mo>−</mo><mi>β</mi><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msup></mrow></semantics></math></inline-formula> for a constant <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>β</mi><mo>></mo><mn>0</mn></mrow></semantics></math></inline-formula>.Xiaofeng ZhaoWei ZhaoMingao YuanMDPI AGarticlecommunity detectionuniform hypergraphlabel informationexact recoveryMathematicsQA1-939ENSymmetry, Vol 13, Iss 2060, p 2060 (2021)
institution DOAJ
collection DOAJ
language EN
topic community detection
uniform hypergraph
label information
exact recovery
Mathematics
QA1-939
spellingShingle community detection
uniform hypergraph
label information
exact recovery
Mathematics
QA1-939
Xiaofeng Zhao
Wei Zhao
Mingao Yuan
Information Limits for Community Detection in Hypergraph with Label Information
description In network data mining, community detection refers to the problem of partitioning the nodes of a network into clusters (communities). This is equivalent to identifying the cluster label of each node. A label estimator is said to be an exact recovery of the true labels (communities) if it coincides with the true labels with a probability convergent to one. In this work, we consider the effect of label information on the exact recovery of communities in an <i>m</i>-uniform Hypergraph Stochastic Block Model (HSBM). We investigate two scenarios of label information: <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></semantics></math></inline-formula> a noisy label for each node is observed independently, with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo>−</mo><msub><mi>α</mi><mi>n</mi></msub></mrow></semantics></math></inline-formula> as the probability that the noisy label will match the true label; <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula> the true label of each node is observed independently, with the probability of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo>−</mo><msub><mi>α</mi><mi>n</mi></msub></mrow></semantics></math></inline-formula>. We derive sharp boundaries for exact recovery under both scenarios from an information-theoretical point of view. The label information improves the sharp detection boundary if and only if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>α</mi><mi>n</mi></msub><mo>=</mo><msup><mi>n</mi><mrow><mo>−</mo><mi>β</mi><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msup></mrow></semantics></math></inline-formula> for a constant <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>β</mi><mo>></mo><mn>0</mn></mrow></semantics></math></inline-formula>.
format article
author Xiaofeng Zhao
Wei Zhao
Mingao Yuan
author_facet Xiaofeng Zhao
Wei Zhao
Mingao Yuan
author_sort Xiaofeng Zhao
title Information Limits for Community Detection in Hypergraph with Label Information
title_short Information Limits for Community Detection in Hypergraph with Label Information
title_full Information Limits for Community Detection in Hypergraph with Label Information
title_fullStr Information Limits for Community Detection in Hypergraph with Label Information
title_full_unstemmed Information Limits for Community Detection in Hypergraph with Label Information
title_sort information limits for community detection in hypergraph with label information
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/5784e698c94c4263b71c7c06a7aa7e56
work_keys_str_mv AT xiaofengzhao informationlimitsforcommunitydetectioninhypergraphwithlabelinformation
AT weizhao informationlimitsforcommunitydetectioninhypergraphwithlabelinformation
AT mingaoyuan informationlimitsforcommunitydetectioninhypergraphwithlabelinformation
_version_ 1718410278667812864