Short-term water demand predictions coupling an artificial neural network model and a genetic algorithm
The application of artificial neural network (ANN) models for short-term (15 min) urban water demand predictions is evaluated. Optimization of the ANN model's hyperparameters with a genetic algorithm (GA) and use of a growing window approach for training the model are also evaluated. The result...
Guardado en:
Autores principales: | Majid Gholami Shirkoohi, Mouna Doghri, Sophie Duchesne |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IWA Publishing
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/578f40e218044c579c04269965ef2c78 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Comparing deep learning with several typical methods in prediction of assessing chlorophyll-a by remote sensing: a case study in Taihu Lake, China
por: Xiaolan Zhao, et al.
Publicado: (2021) -
Corrigendum: H2Open Journal 2 (1), 125–136: Nutrient removal using spent coconut husks, Trina Halfhide, Lorale J. Lalgee, Karen Seudat Singh, Joshua Williams, Matthew Sealy, Anton Manoo and Azad Mohammed, doi: 10.2166/h2oj.2019.011
Publicado: (2021) -
Editorial: Important news about this journal
Publicado: (2021) -
Editorial: Integrated water management for enhanced water quality and reuse to create a sustainable future
por: Eldon R. Rene, et al.
Publicado: (2021) -
Erratum: Water Supply 20 (7), 2484–2498: Historic hydraulic works: paradigms of traditional good water governance, integrity and sustainability, Feirouz Megdiche-Kharrat, Xiao Yun Zheng, Mohamed Moussa, Zhang Famin and Andreas N. Angelakis
Publicado: (2021)