Low toxic maghemite nanoparticles for theranostic applications
Elena A Kuchma,* Peter V Zolotukhin, Anna A Belanova, Mikhail A Soldatov, Tatiana A Lastovina, Stanislav P Kubrin, Anatoliy V Nikolsky, Lidia I Mirmikova, Alexander V Soldatov* The Smart Materials Research Center, Southern Federal University of Russia, Rostov-on-Don, Russia *These authors contribu...
Guardado en:
Autores principales: | , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Dove Medical Press
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/57906359fc5542bcaa69ab4641a21fe4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:57906359fc5542bcaa69ab4641a21fe4 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:57906359fc5542bcaa69ab4641a21fe42021-12-02T01:32:09ZLow toxic maghemite nanoparticles for theranostic applications1178-2013https://doaj.org/article/57906359fc5542bcaa69ab4641a21fe42017-08-01T00:00:00Zhttps://www.dovepress.com/low-toxic-maghemite-nanoparticles-for-theranostic-applications-peer-reviewed-article-IJNhttps://doaj.org/toc/1178-2013Elena A Kuchma,* Peter V Zolotukhin, Anna A Belanova, Mikhail A Soldatov, Tatiana A Lastovina, Stanislav P Kubrin, Anatoliy V Nikolsky, Lidia I Mirmikova, Alexander V Soldatov* The Smart Materials Research Center, Southern Federal University of Russia, Rostov-on-Don, Russia *These authors contributed equally to this work Background: Iron oxide nanoparticles have numerous and versatile biological properties, ranging from direct and immediate biochemical effects to prolonged influences on tissues. Most applications have strict requirements with respect to the chemical and physical properties of such agents. Therefore, developing rational design methods of synthesis of iron oxide nanoparticles remains of vital importance in nanobiomedicine.Methods: Low toxic superparamagnetic iron oxide nanoparticles (SPIONs) for theranostic applications in oncology having spherical shape and maghemite structure were produced using the fast microwave synthesis technique and were fully characterized by several complementary methods (transmission electron microscopy [TEM], X-ray diffraction [XRD], dynamic light scattering [DLS], X-ray photoelectron spectroscopy [XPS], X-ray absorption near edge structure [XANES], Mossbauer spectroscopy, and HeLa cells toxicity testing).Results: TEM showed that the majority of the obtained nanoparticles were almost spherical and did not exceed 20 nm in diameter. The averaged DLS hydrodynamic size was found to be ~33 nm, while that of nanocrystallites estimated by XRD was ~16 nm. Both XRD and XPS studies evidenced the maghemite (γ-Fe2O3) atomic and electronic structure of the synthesized nanoparticles. The XANES data analysis demonstrated the structure of the nanoparticles being similar to that of macroscopic maghemite. The Mossbauer spectroscopy revealed the γ-Fe2O3 phase of the nanoparticles and vibration magnetometry study showed that reactive oxygen species in HeLa cells are generated both in the cytoplasm and the nucleus.Conclusion: Quasispherical Fe3+ SPIONs having the maghemite structure with the average size of 16 nm obtained by using the fast microwave synthesis technique are expected to be of great value for theranostic applications in oncology and multimodal anticancer therapy. Keywords: magnetic nanoparticles, SPIONs, maghemite, theranostics in oncology, toxicity, ROSKuchma EAZolotukhin PVBelanova AASoldatov MALastovina TAKubrin SPNikolsky AVMirmikova LISoldatov AVDove Medical Pressarticlemagnetic nanoparticlesSPIONsMaghemitetheranostics in oncologytoxicityROS.Medicine (General)R5-920ENInternational Journal of Nanomedicine, Vol Volume 12, Pp 6365-6371 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
magnetic nanoparticles SPIONs Maghemite theranostics in oncology toxicity ROS. Medicine (General) R5-920 |
spellingShingle |
magnetic nanoparticles SPIONs Maghemite theranostics in oncology toxicity ROS. Medicine (General) R5-920 Kuchma EA Zolotukhin PV Belanova AA Soldatov MA Lastovina TA Kubrin SP Nikolsky AV Mirmikova LI Soldatov AV Low toxic maghemite nanoparticles for theranostic applications |
description |
Elena A Kuchma,* Peter V Zolotukhin, Anna A Belanova, Mikhail A Soldatov, Tatiana A Lastovina, Stanislav P Kubrin, Anatoliy V Nikolsky, Lidia I Mirmikova, Alexander V Soldatov* The Smart Materials Research Center, Southern Federal University of Russia, Rostov-on-Don, Russia *These authors contributed equally to this work Background: Iron oxide nanoparticles have numerous and versatile biological properties, ranging from direct and immediate biochemical effects to prolonged influences on tissues. Most applications have strict requirements with respect to the chemical and physical properties of such agents. Therefore, developing rational design methods of synthesis of iron oxide nanoparticles remains of vital importance in nanobiomedicine.Methods: Low toxic superparamagnetic iron oxide nanoparticles (SPIONs) for theranostic applications in oncology having spherical shape and maghemite structure were produced using the fast microwave synthesis technique and were fully characterized by several complementary methods (transmission electron microscopy [TEM], X-ray diffraction [XRD], dynamic light scattering [DLS], X-ray photoelectron spectroscopy [XPS], X-ray absorption near edge structure [XANES], Mossbauer spectroscopy, and HeLa cells toxicity testing).Results: TEM showed that the majority of the obtained nanoparticles were almost spherical and did not exceed 20 nm in diameter. The averaged DLS hydrodynamic size was found to be ~33 nm, while that of nanocrystallites estimated by XRD was ~16 nm. Both XRD and XPS studies evidenced the maghemite (γ-Fe2O3) atomic and electronic structure of the synthesized nanoparticles. The XANES data analysis demonstrated the structure of the nanoparticles being similar to that of macroscopic maghemite. The Mossbauer spectroscopy revealed the γ-Fe2O3 phase of the nanoparticles and vibration magnetometry study showed that reactive oxygen species in HeLa cells are generated both in the cytoplasm and the nucleus.Conclusion: Quasispherical Fe3+ SPIONs having the maghemite structure with the average size of 16 nm obtained by using the fast microwave synthesis technique are expected to be of great value for theranostic applications in oncology and multimodal anticancer therapy. Keywords: magnetic nanoparticles, SPIONs, maghemite, theranostics in oncology, toxicity, ROS |
format |
article |
author |
Kuchma EA Zolotukhin PV Belanova AA Soldatov MA Lastovina TA Kubrin SP Nikolsky AV Mirmikova LI Soldatov AV |
author_facet |
Kuchma EA Zolotukhin PV Belanova AA Soldatov MA Lastovina TA Kubrin SP Nikolsky AV Mirmikova LI Soldatov AV |
author_sort |
Kuchma EA |
title |
Low toxic maghemite nanoparticles for theranostic applications |
title_short |
Low toxic maghemite nanoparticles for theranostic applications |
title_full |
Low toxic maghemite nanoparticles for theranostic applications |
title_fullStr |
Low toxic maghemite nanoparticles for theranostic applications |
title_full_unstemmed |
Low toxic maghemite nanoparticles for theranostic applications |
title_sort |
low toxic maghemite nanoparticles for theranostic applications |
publisher |
Dove Medical Press |
publishDate |
2017 |
url |
https://doaj.org/article/57906359fc5542bcaa69ab4641a21fe4 |
work_keys_str_mv |
AT kuchmaea lowtoxicmaghemitenanoparticlesfortheranosticapplications AT zolotukhinpv lowtoxicmaghemitenanoparticlesfortheranosticapplications AT belanovaaa lowtoxicmaghemitenanoparticlesfortheranosticapplications AT soldatovma lowtoxicmaghemitenanoparticlesfortheranosticapplications AT lastovinata lowtoxicmaghemitenanoparticlesfortheranosticapplications AT kubrinsp lowtoxicmaghemitenanoparticlesfortheranosticapplications AT nikolskyav lowtoxicmaghemitenanoparticlesfortheranosticapplications AT mirmikovali lowtoxicmaghemitenanoparticlesfortheranosticapplications AT soldatovav lowtoxicmaghemitenanoparticlesfortheranosticapplications |
_version_ |
1718403014527549440 |