Recombinant expression and characterization of the cytoplasmic rice β-glucosidase Os1BGlu4.

The Os1BGlu4 β-glucosidase is the only glycoside hydrolase family 1 member in rice that is predicted to be localized in the cytoplasm. To characterize the biochemical function of rice Os1BGlu4, the Os1bglu4 cDNA was cloned and used to express a thioredoxin fusion protein in Escherichia coli. After r...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Chen Rouyi, Supaporn Baiya, Sang-Kyu Lee, Bancha Mahong, Jong-Seong Jeon, James R Ketudat-Cairns, Mariena Ketudat-Cairns
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2014
Materias:
R
Q
Acceso en línea:https://doaj.org/article/57a7e37b954740ab8fbf2e6c67e03259
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:57a7e37b954740ab8fbf2e6c67e03259
record_format dspace
spelling oai:doaj.org-article:57a7e37b954740ab8fbf2e6c67e032592021-11-18T08:20:31ZRecombinant expression and characterization of the cytoplasmic rice β-glucosidase Os1BGlu4.1932-620310.1371/journal.pone.0096712https://doaj.org/article/57a7e37b954740ab8fbf2e6c67e032592014-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/24802508/pdf/?tool=EBIhttps://doaj.org/toc/1932-6203The Os1BGlu4 β-glucosidase is the only glycoside hydrolase family 1 member in rice that is predicted to be localized in the cytoplasm. To characterize the biochemical function of rice Os1BGlu4, the Os1bglu4 cDNA was cloned and used to express a thioredoxin fusion protein in Escherichia coli. After removal of the tag, the purified recombinant Os1BGlu4 (rOs1BGlu4) exhibited an optimum pH of 6.5, which is consistent with Os1BGlu4's cytoplasmic localization. Fluorescence microscopy of maize protoplasts and tobacco leaf cells expressing green fluorescent protein-tagged Os1BGlu4 confirmed the cytoplasmic localization. Purified rOs1BGlu4 can hydrolyze p-nitrophenyl (pNP)-β-D-glucoside (pNPGlc) efficiently (kcat/Km  =  17.9 mM(-1) · s(-1)), and hydrolyzes pNP-β-D-fucopyranoside with about 50% the efficiency of the pNPGlc. Among natural substrates tested, rOs1BGlu4 efficiently hydrolyzed β-(1,3)-linked oligosaccharides of degree of polymerization (DP) 2-3, and β-(1,4)-linked oligosaccharide of DP 3-4, and hydrolysis of salicin, esculin and p-coumaryl alcohol was also detected. Analysis of the hydrolysis of pNP-β-cellobioside showed that the initial hydrolysis was between the two glucose molecules, and suggested rOs1BGlu4 transglucosylates this substrate. At 10 mM pNPGlc concentration, rOs1BGlu4 can transfer the glucosyl group of pNPGlc to ethanol and pNPGlc. This transglycosylation activity suggests the potential use of Os1BGlu4 for pNP-oligosaccharide and alkyl glycosides synthesis.Chen RouyiSupaporn BaiyaSang-Kyu LeeBancha MahongJong-Seong JeonJames R Ketudat-CairnsMariena Ketudat-CairnsPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 9, Iss 5, p e96712 (2014)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Chen Rouyi
Supaporn Baiya
Sang-Kyu Lee
Bancha Mahong
Jong-Seong Jeon
James R Ketudat-Cairns
Mariena Ketudat-Cairns
Recombinant expression and characterization of the cytoplasmic rice β-glucosidase Os1BGlu4.
description The Os1BGlu4 β-glucosidase is the only glycoside hydrolase family 1 member in rice that is predicted to be localized in the cytoplasm. To characterize the biochemical function of rice Os1BGlu4, the Os1bglu4 cDNA was cloned and used to express a thioredoxin fusion protein in Escherichia coli. After removal of the tag, the purified recombinant Os1BGlu4 (rOs1BGlu4) exhibited an optimum pH of 6.5, which is consistent with Os1BGlu4's cytoplasmic localization. Fluorescence microscopy of maize protoplasts and tobacco leaf cells expressing green fluorescent protein-tagged Os1BGlu4 confirmed the cytoplasmic localization. Purified rOs1BGlu4 can hydrolyze p-nitrophenyl (pNP)-β-D-glucoside (pNPGlc) efficiently (kcat/Km  =  17.9 mM(-1) · s(-1)), and hydrolyzes pNP-β-D-fucopyranoside with about 50% the efficiency of the pNPGlc. Among natural substrates tested, rOs1BGlu4 efficiently hydrolyzed β-(1,3)-linked oligosaccharides of degree of polymerization (DP) 2-3, and β-(1,4)-linked oligosaccharide of DP 3-4, and hydrolysis of salicin, esculin and p-coumaryl alcohol was also detected. Analysis of the hydrolysis of pNP-β-cellobioside showed that the initial hydrolysis was between the two glucose molecules, and suggested rOs1BGlu4 transglucosylates this substrate. At 10 mM pNPGlc concentration, rOs1BGlu4 can transfer the glucosyl group of pNPGlc to ethanol and pNPGlc. This transglycosylation activity suggests the potential use of Os1BGlu4 for pNP-oligosaccharide and alkyl glycosides synthesis.
format article
author Chen Rouyi
Supaporn Baiya
Sang-Kyu Lee
Bancha Mahong
Jong-Seong Jeon
James R Ketudat-Cairns
Mariena Ketudat-Cairns
author_facet Chen Rouyi
Supaporn Baiya
Sang-Kyu Lee
Bancha Mahong
Jong-Seong Jeon
James R Ketudat-Cairns
Mariena Ketudat-Cairns
author_sort Chen Rouyi
title Recombinant expression and characterization of the cytoplasmic rice β-glucosidase Os1BGlu4.
title_short Recombinant expression and characterization of the cytoplasmic rice β-glucosidase Os1BGlu4.
title_full Recombinant expression and characterization of the cytoplasmic rice β-glucosidase Os1BGlu4.
title_fullStr Recombinant expression and characterization of the cytoplasmic rice β-glucosidase Os1BGlu4.
title_full_unstemmed Recombinant expression and characterization of the cytoplasmic rice β-glucosidase Os1BGlu4.
title_sort recombinant expression and characterization of the cytoplasmic rice β-glucosidase os1bglu4.
publisher Public Library of Science (PLoS)
publishDate 2014
url https://doaj.org/article/57a7e37b954740ab8fbf2e6c67e03259
work_keys_str_mv AT chenrouyi recombinantexpressionandcharacterizationofthecytoplasmicricebglucosidaseos1bglu4
AT supapornbaiya recombinantexpressionandcharacterizationofthecytoplasmicricebglucosidaseos1bglu4
AT sangkyulee recombinantexpressionandcharacterizationofthecytoplasmicricebglucosidaseos1bglu4
AT banchamahong recombinantexpressionandcharacterizationofthecytoplasmicricebglucosidaseos1bglu4
AT jongseongjeon recombinantexpressionandcharacterizationofthecytoplasmicricebglucosidaseos1bglu4
AT jamesrketudatcairns recombinantexpressionandcharacterizationofthecytoplasmicricebglucosidaseos1bglu4
AT marienaketudatcairns recombinantexpressionandcharacterizationofthecytoplasmicricebglucosidaseos1bglu4
_version_ 1718421861597970432