“Guilt by association” is not competitive with genetic association for identifying autism risk genes
Abstract Discovering genes involved in complex human genetic disorders is a major challenge. Many have suggested that machine learning (ML) algorithms using gene networks can be used to supplement traditional genetic association-based approaches to predict or prioritize disease genes. However, quest...
Guardado en:
Autores principales: | Margot Gunning, Paul Pavlidis |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/57ad295e685c4a7cb9497eadb8411947 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
The impact of multifunctional genes on "guilt by association" analysis.
por: Jesse Gillis, et al.
Publicado: (2011) -
"Guilt by association" is the exception rather than the rule in gene networks.
por: Jesse Gillis, et al.
Publicado: (2012) -
Text mining of gene–phenotype associations reveals new phenotypic profiles of autism-associated genes
por: Sijie Li, et al.
Publicado: (2021) -
The autonomic signature of guilt in children: a thermal infrared imaging study.
por: Stephanos Ioannou, et al.
Publicado: (2013) -
Biosimilars: presumption of guilt
por: Marina Vladimirovna Shestakova, et al.
Publicado: (2011)