A new bioinformatics approach identifies overexpression of GRB2 as a poor prognostic biomarker for prostate cancer
Abstract A subset of prostate cancer displays a poor clinical outcome. Therefore, identifying this poor prognostic subset within clinically aggressive groups (defined as a Gleason score (GS) ≧8) and developing effective treatments are essential if we are to improve prostate cancer survival. Here, we...
Guardado en:
Autores principales: | , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/57ba76a682034c09bcdb46e58c83ae0b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:57ba76a682034c09bcdb46e58c83ae0b |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:57ba76a682034c09bcdb46e58c83ae0b2021-12-02T13:20:11ZA new bioinformatics approach identifies overexpression of GRB2 as a poor prognostic biomarker for prostate cancer10.1038/s41598-021-85086-92045-2322https://doaj.org/article/57ba76a682034c09bcdb46e58c83ae0b2021-03-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-85086-9https://doaj.org/toc/2045-2322Abstract A subset of prostate cancer displays a poor clinical outcome. Therefore, identifying this poor prognostic subset within clinically aggressive groups (defined as a Gleason score (GS) ≧8) and developing effective treatments are essential if we are to improve prostate cancer survival. Here, we performed a bioinformatics analysis of a TCGA dataset (GS ≧8) to identify pathways upregulated in a prostate cancer cohort with short survival. When conducting bioinformatics analyses, the definition of factors such as “overexpression” and “shorter survival” is vital, as poor definition may lead to mis-estimations. To eliminate this possibility, we defined an expression cutoff value using an algorithm calculated by a Cox regression model, and the hazard ratio for each gene was set so as to identify genes whose expression levels were associated with shorter survival. Next, genes associated with shorter survival were entered into pathway analysis to identify pathways that were altered in a shorter survival cohort. We identified pathways involving upregulation of GRB2. Overexpression of GRB2 was linked to shorter survival in the TCGA dataset, a finding validated by histological examination of biopsy samples taken from the patients for diagnostic purposes. Thus, GRB2 is a novel biomarker that predicts shorter survival of patients with aggressive prostate cancer (GS ≧8).Teppei IwataAnna S. SedukhinaManabu KubotaShigeko OonumaIchiro MaedaMiki YoshiikeWataru UsubaKimino MinagawaEleina HamesRei MeguroSunny ChoStephen H. H. ChienShiro UrabeSookhee PaeKishore PalanisamyToshio KumaiKazuo YudoEiji KikuchiKo SatoNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-8 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Teppei Iwata Anna S. Sedukhina Manabu Kubota Shigeko Oonuma Ichiro Maeda Miki Yoshiike Wataru Usuba Kimino Minagawa Eleina Hames Rei Meguro Sunny Cho Stephen H. H. Chien Shiro Urabe Sookhee Pae Kishore Palanisamy Toshio Kumai Kazuo Yudo Eiji Kikuchi Ko Sato A new bioinformatics approach identifies overexpression of GRB2 as a poor prognostic biomarker for prostate cancer |
description |
Abstract A subset of prostate cancer displays a poor clinical outcome. Therefore, identifying this poor prognostic subset within clinically aggressive groups (defined as a Gleason score (GS) ≧8) and developing effective treatments are essential if we are to improve prostate cancer survival. Here, we performed a bioinformatics analysis of a TCGA dataset (GS ≧8) to identify pathways upregulated in a prostate cancer cohort with short survival. When conducting bioinformatics analyses, the definition of factors such as “overexpression” and “shorter survival” is vital, as poor definition may lead to mis-estimations. To eliminate this possibility, we defined an expression cutoff value using an algorithm calculated by a Cox regression model, and the hazard ratio for each gene was set so as to identify genes whose expression levels were associated with shorter survival. Next, genes associated with shorter survival were entered into pathway analysis to identify pathways that were altered in a shorter survival cohort. We identified pathways involving upregulation of GRB2. Overexpression of GRB2 was linked to shorter survival in the TCGA dataset, a finding validated by histological examination of biopsy samples taken from the patients for diagnostic purposes. Thus, GRB2 is a novel biomarker that predicts shorter survival of patients with aggressive prostate cancer (GS ≧8). |
format |
article |
author |
Teppei Iwata Anna S. Sedukhina Manabu Kubota Shigeko Oonuma Ichiro Maeda Miki Yoshiike Wataru Usuba Kimino Minagawa Eleina Hames Rei Meguro Sunny Cho Stephen H. H. Chien Shiro Urabe Sookhee Pae Kishore Palanisamy Toshio Kumai Kazuo Yudo Eiji Kikuchi Ko Sato |
author_facet |
Teppei Iwata Anna S. Sedukhina Manabu Kubota Shigeko Oonuma Ichiro Maeda Miki Yoshiike Wataru Usuba Kimino Minagawa Eleina Hames Rei Meguro Sunny Cho Stephen H. H. Chien Shiro Urabe Sookhee Pae Kishore Palanisamy Toshio Kumai Kazuo Yudo Eiji Kikuchi Ko Sato |
author_sort |
Teppei Iwata |
title |
A new bioinformatics approach identifies overexpression of GRB2 as a poor prognostic biomarker for prostate cancer |
title_short |
A new bioinformatics approach identifies overexpression of GRB2 as a poor prognostic biomarker for prostate cancer |
title_full |
A new bioinformatics approach identifies overexpression of GRB2 as a poor prognostic biomarker for prostate cancer |
title_fullStr |
A new bioinformatics approach identifies overexpression of GRB2 as a poor prognostic biomarker for prostate cancer |
title_full_unstemmed |
A new bioinformatics approach identifies overexpression of GRB2 as a poor prognostic biomarker for prostate cancer |
title_sort |
new bioinformatics approach identifies overexpression of grb2 as a poor prognostic biomarker for prostate cancer |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/57ba76a682034c09bcdb46e58c83ae0b |
work_keys_str_mv |
AT teppeiiwata anewbioinformaticsapproachidentifiesoverexpressionofgrb2asapoorprognosticbiomarkerforprostatecancer AT annassedukhina anewbioinformaticsapproachidentifiesoverexpressionofgrb2asapoorprognosticbiomarkerforprostatecancer AT manabukubota anewbioinformaticsapproachidentifiesoverexpressionofgrb2asapoorprognosticbiomarkerforprostatecancer AT shigekooonuma anewbioinformaticsapproachidentifiesoverexpressionofgrb2asapoorprognosticbiomarkerforprostatecancer AT ichiromaeda anewbioinformaticsapproachidentifiesoverexpressionofgrb2asapoorprognosticbiomarkerforprostatecancer AT mikiyoshiike anewbioinformaticsapproachidentifiesoverexpressionofgrb2asapoorprognosticbiomarkerforprostatecancer AT wataruusuba anewbioinformaticsapproachidentifiesoverexpressionofgrb2asapoorprognosticbiomarkerforprostatecancer AT kiminominagawa anewbioinformaticsapproachidentifiesoverexpressionofgrb2asapoorprognosticbiomarkerforprostatecancer AT eleinahames anewbioinformaticsapproachidentifiesoverexpressionofgrb2asapoorprognosticbiomarkerforprostatecancer AT reimeguro anewbioinformaticsapproachidentifiesoverexpressionofgrb2asapoorprognosticbiomarkerforprostatecancer AT sunnycho anewbioinformaticsapproachidentifiesoverexpressionofgrb2asapoorprognosticbiomarkerforprostatecancer AT stephenhhchien anewbioinformaticsapproachidentifiesoverexpressionofgrb2asapoorprognosticbiomarkerforprostatecancer AT shirourabe anewbioinformaticsapproachidentifiesoverexpressionofgrb2asapoorprognosticbiomarkerforprostatecancer AT sookheepae anewbioinformaticsapproachidentifiesoverexpressionofgrb2asapoorprognosticbiomarkerforprostatecancer AT kishorepalanisamy anewbioinformaticsapproachidentifiesoverexpressionofgrb2asapoorprognosticbiomarkerforprostatecancer AT toshiokumai anewbioinformaticsapproachidentifiesoverexpressionofgrb2asapoorprognosticbiomarkerforprostatecancer AT kazuoyudo anewbioinformaticsapproachidentifiesoverexpressionofgrb2asapoorprognosticbiomarkerforprostatecancer AT eijikikuchi anewbioinformaticsapproachidentifiesoverexpressionofgrb2asapoorprognosticbiomarkerforprostatecancer AT kosato anewbioinformaticsapproachidentifiesoverexpressionofgrb2asapoorprognosticbiomarkerforprostatecancer AT teppeiiwata newbioinformaticsapproachidentifiesoverexpressionofgrb2asapoorprognosticbiomarkerforprostatecancer AT annassedukhina newbioinformaticsapproachidentifiesoverexpressionofgrb2asapoorprognosticbiomarkerforprostatecancer AT manabukubota newbioinformaticsapproachidentifiesoverexpressionofgrb2asapoorprognosticbiomarkerforprostatecancer AT shigekooonuma newbioinformaticsapproachidentifiesoverexpressionofgrb2asapoorprognosticbiomarkerforprostatecancer AT ichiromaeda newbioinformaticsapproachidentifiesoverexpressionofgrb2asapoorprognosticbiomarkerforprostatecancer AT mikiyoshiike newbioinformaticsapproachidentifiesoverexpressionofgrb2asapoorprognosticbiomarkerforprostatecancer AT wataruusuba newbioinformaticsapproachidentifiesoverexpressionofgrb2asapoorprognosticbiomarkerforprostatecancer AT kiminominagawa newbioinformaticsapproachidentifiesoverexpressionofgrb2asapoorprognosticbiomarkerforprostatecancer AT eleinahames newbioinformaticsapproachidentifiesoverexpressionofgrb2asapoorprognosticbiomarkerforprostatecancer AT reimeguro newbioinformaticsapproachidentifiesoverexpressionofgrb2asapoorprognosticbiomarkerforprostatecancer AT sunnycho newbioinformaticsapproachidentifiesoverexpressionofgrb2asapoorprognosticbiomarkerforprostatecancer AT stephenhhchien newbioinformaticsapproachidentifiesoverexpressionofgrb2asapoorprognosticbiomarkerforprostatecancer AT shirourabe newbioinformaticsapproachidentifiesoverexpressionofgrb2asapoorprognosticbiomarkerforprostatecancer AT sookheepae newbioinformaticsapproachidentifiesoverexpressionofgrb2asapoorprognosticbiomarkerforprostatecancer AT kishorepalanisamy newbioinformaticsapproachidentifiesoverexpressionofgrb2asapoorprognosticbiomarkerforprostatecancer AT toshiokumai newbioinformaticsapproachidentifiesoverexpressionofgrb2asapoorprognosticbiomarkerforprostatecancer AT kazuoyudo newbioinformaticsapproachidentifiesoverexpressionofgrb2asapoorprognosticbiomarkerforprostatecancer AT eijikikuchi newbioinformaticsapproachidentifiesoverexpressionofgrb2asapoorprognosticbiomarkerforprostatecancer AT kosato newbioinformaticsapproachidentifiesoverexpressionofgrb2asapoorprognosticbiomarkerforprostatecancer |
_version_ |
1718393211637989376 |