Endpoint relations for baryons

Abstract Following our earlier work we establish kinematic endpoint relations for baryon decays using the Wigner-Eckart theorem and apply them to 1 2 → 1 2 $$ \frac{1}{2}\to \frac{1}{2} $$ and 1 2 → 3 2 $$ \frac{1}{2}\to \frac{3}{2} $$ baryon transitions. We provide angular distributions at the kine...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Gudrun Hiller, Roman Zwicky
Formato: article
Lenguaje:EN
Publicado: SpringerOpen 2021
Materias:
Acceso en línea:https://doaj.org/article/57d6465d0f594830a271b18ea2098c4a
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Following our earlier work we establish kinematic endpoint relations for baryon decays using the Wigner-Eckart theorem and apply them to 1 2 → 1 2 $$ \frac{1}{2}\to \frac{1}{2} $$ and 1 2 → 3 2 $$ \frac{1}{2}\to \frac{3}{2} $$ baryon transitions. We provide angular distributions at the kinematic endpoint which hold for the generic d = 6 model-independent effective Hamiltonian and comment on the behaviour in the vicinity of the endpoint. Moreover, we verify the endpoint relations, using an explicit form factor parametrisation, and clarify constraints on helicity-based form factors to evidence endpoint relations. Our results provide guidance for phenomenological parameterisations, consistency checks for theory computations and experiment. Results are applicable to ongoing and future new physics searches at LHCb, BES III and Belle II with rare semileptonic-, dineutrino-and charged-modes, which include Λ b → Λ(*) ℓℓ, Λ b → Λ(*) νν, Ω b → Ωℓℓ, Λ c → pℓℓ, Σ → pℓℓ and Λ b → Λ c ∗ $$ {\Lambda}_c^{\left(\ast \right)} $$ ℓν.