Endpoint relations for baryons
Abstract Following our earlier work we establish kinematic endpoint relations for baryon decays using the Wigner-Eckart theorem and apply them to 1 2 → 1 2 $$ \frac{1}{2}\to \frac{1}{2} $$ and 1 2 → 3 2 $$ \frac{1}{2}\to \frac{3}{2} $$ baryon transitions. We provide angular distributions at the kine...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
SpringerOpen
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/57d6465d0f594830a271b18ea2098c4a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract Following our earlier work we establish kinematic endpoint relations for baryon decays using the Wigner-Eckart theorem and apply them to 1 2 → 1 2 $$ \frac{1}{2}\to \frac{1}{2} $$ and 1 2 → 3 2 $$ \frac{1}{2}\to \frac{3}{2} $$ baryon transitions. We provide angular distributions at the kinematic endpoint which hold for the generic d = 6 model-independent effective Hamiltonian and comment on the behaviour in the vicinity of the endpoint. Moreover, we verify the endpoint relations, using an explicit form factor parametrisation, and clarify constraints on helicity-based form factors to evidence endpoint relations. Our results provide guidance for phenomenological parameterisations, consistency checks for theory computations and experiment. Results are applicable to ongoing and future new physics searches at LHCb, BES III and Belle II with rare semileptonic-, dineutrino-and charged-modes, which include Λ b → Λ(*) ℓℓ, Λ b → Λ(*) νν, Ω b → Ωℓℓ, Λ c → pℓℓ, Σ → pℓℓ and Λ b → Λ c ∗ $$ {\Lambda}_c^{\left(\ast \right)} $$ ℓν. |
---|